Kuby IMMUNOLOGY SEVENTH EDITION

OWEN | PUNT | STRANFORD

KUBY Immunology

Judith A. Owen

Haverford College

Jenni Punt Haverford College

Sharon A. Stranford

Mount Holyoke College

with contributions by **Patricia P. Jones**

Stanford University

Seventh Edition

W. H. Freeman and Company • New York

Publisher: Susan Winslow Senior Acquisitions Editor: Lauren Schultz Associate Director of Marketing: Debbie Clare Marketing Assistant: Lindsay Neff Developmental Editor: Erica Champion Developmental Editor: Irene Pech Developmental Coordinator: Sara Ruth Blake Associate Media Editor: Allison Michael Supplements Editor: Yassamine Ebadat Senior Project Manager at Aptara: Sherrill Redd Photo Editor: Christine Buese Photo Researcher: Elyse Reider Art Director: Diana Blume Text Designer: Marsha Cohen *Illustrations:* Imagineering Illustration Coordinator: Janice Donnola Production Coordinator: Lawrence Guerra Composition: Aptara®, Inc. Printing and Binding: RR Donnelley

Library of Congress Control Number: 2012950797

North American Edition Cover image: ©2009 Pflicke and Sixt. Originally published in **The Journal of Experimental Medicine**. 206:2925-2935. doi:10.1084/jem.20091739. Image provided by Holger Pflicke and Michael Sixt.

International Edition Cover design: Dirk Kaufman Cover image: Nastco/iStockphoto.com

North American Edition ISBN-13: 978-14292-1919-8 ISBN-10: 1-4292-1919-X

International Edition ISBN-13: 978-14641-3784-6 ISBN-10: 1-4641-3784-6

© 1992, 1994, 1997, 2000, 2003, 2007, 2013 by W. H. Freeman and Company All rights reserved

Printed in the United States of America

First printing

North American Edition W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 www.whfreeman.com

International Edition Macmillan Higher Education Houndmills, Basingstoke RG21 6XS, England www.macmillanhighered.com/international To all our students, fellows, and colleagues who have made our careers in immunology a source of joy and excitement, and to our families who made these careers possible. We hope that future generations of immunology students will find this subject as fascinating and rewarding as we have.

About the Authors

All four authors are active scholars and teachers who have been/are recipients of research grants from the NIH and the NSF. We have all served in various capacities as grant proposal reviewers for NSF, NIH, HHMI, and other funding bodies as well as evaluating manuscripts submitted for publication in immunological journals. In addition, we are all active members of the American Association of Immunologists and have served our national organization in a variety of ways.

Judy Owen holds B.A. and M.A. (Hons) degrees from Cambridge University. She pursued her Ph.D. at the University of Pennsylvania with the late Dr. Norman Klinman and her post-doctoral fellowship with Dr. Peter Doherty in viral immunology. She was appointed to the faculty of Haverford College, one of the first undergraduate colleges to offer a course in immunology, in 1981. She teaches numerous laboratory and lecture courses in biochemistry and immunology and has received several teaching and mentorship awards. She is a participant in the First Year Writing Program and has been involved in curriculum development across the College.

Jenni Punt received her A.B. from Bryn Mawr College (*magna cum laude*) majoring in Biology at Haverford College, She received her VMD (*summa cum laude*) and Ph.D. in immunology from the University of Pennsylvania and was a Damon Runyon-Walter Winchell Physician-Scientist fellow with Dr. Alfred Singer at the National Institutes of Health. She was appointed to the faculty of Haverford College in 1996 where she teaches cell biology and immunology and performs research in T cell development and hematopoiesis. She has received several teaching awards and has contributed to the development of college-wide curricular initiatives.

Together, Jenni Punt and Judy Owen developed and ran the first AAI Introductory Immunology course, which is now offered on an annual basis.

Sharon Stranford obtained her B.A. with Honors in Biology from Arcadia University and her Ph.D. in Microbiology and Immunology from Hahnemann (now Drexel) University, where she studied autoimmunity with funding from the Multiple Sclerosis Foundation. She pursued postdoctoral studies in transplantation immunology at Oxford University in England, followed by a fellowship at the University of California, San Francisco, working on HIV/AIDS with Dr. Jay Levy. From 1999 to 2001, Sharon was a Visiting Assistant Professor of Biology at Amherst College, and in 2001 joined the faculty of Mount Holyoke College as a Clare Boothe Luce Assistant Professor. She teaches courses in introductory biology, cell biology, immunology, and infectious disease, as well as a new interdisciplinary course called Controversies in Public Health.

Pat Jones graduated from Oberlin College in Ohio with Highest Honors in Biology and obtained her Ph.D. in Biology with Distinction from the Johns Hopkins University. She was a postdoctoral fellow of the Arthritis Foundation for two years in the Department of Biochemistry and Biophysics at the University of California, San Francisco, Medical School, followed by two years as an NSF postdoctoral fellow in the Departments of Genetics and Medicine/ Immunology at Stanford University School of Medicine. In 1978 she was appointed Assistant Professor of Biology at Stanford and is now a full professor. Pat has received several undergraduate teaching awards, was the founding Director of the Ph.D. Program in Immunology, and in July, 2011, she assumed the position of Director of Stanford Immunology, a position that coordinates activities in immunology across the university.

Contents

Chapter 1

Overview of the Immune System

A Historical Perspective of Immunology

Early vaccination studies led the way to immunology

Vaccination is an ongoing, worldwide enterprise

Immunology is about more than just vaccines and infectious disease

Immunity involves both humoral and cellular components

How are foreign substances recognized by the immune system?

Important Concepts for Understanding the Mammalian Immune Response

Pathogens come in many forms and must first breach natural barriers

The immune response quickly becomes tailored to suit the assault

Pathogen recognition molecules can be encoded in the germline or randomly generated

Tolerance ensures that the immune system avoids destroying the host

The immune response is composed of two interconnected arms: innate immunity and adaptive immunity

Adaptive immune responses typically generate memory

The Good, Bad, and Ugly of the Immune System

Inappropriate or dysfunctional immune responses can result in a range of disorders
The immune response renders tissue transplantation challenging
Cancer presents a unique challenge to the immune response

SUMMARY	23
REFERENCES	23
USEFUL WEB SITES	23
STUDY QUESTIONS	24

Chapter 2

1

2

2 3

4

6

9

11

12

12

14

15

16

17

19

19

22

System	2
Cells of the Immune System	
Hematopoietic stem cells have the ability to differentiate into many types of blood cells	
Hematopoeisis is the process by which hematopoietic stem cells develop into mature blood cells	
Cells of the myeloid lineage are the first responders to infection	
Cells of the lymphoid lineage regulate the adaptive immune response	
Primary Lymphoid Organs— Where Immune Cells Develop	
The bone marrow provides niches for hematopoietic stem cells to self-renew and differentiate into myeloid cells and B lymphocytes	
The thymus is a primary lymphoid organ where T cells mature	
Secondary Lymphoid Organs— Where the Immune Response Is Initiated	
Secondary lymphoid organs are distributed through- out the body and share some anatomical features	
Lymphoid organs are connected to each other and to infected tissue by two different circulatory systems: blood and lymphatics	
The lymph node is a highly specialized secondary	

viii Contents

The spleen organizes the immune response against blood-borne pathogens	53
MALT organizes the response to antigen that enters mucosal tissues	53
The skin is an innate immune barrier and also includes lymphoid tissue	56
Tertiary lymphoid tissues also organize and maintain an immune response	57
SUMMARY	60
REFERENCES	60
USEFUL WEB SITES	61
STUDY QUESTIONS	61

Chapter 3

Receptors and Signaling: B and T-Cell Receptors

ceptor-Ligand Interactions	66
Receptor-ligand binding occurs via multiple noncovalent bonds	66
How do we quantitate the strength of receptor- ligand interactions?	66
Interactions between receptors and ligands can be multivalent	67
Receptor and ligand expression can vary during the course of an immune response	68
Local concentrations of cytokines and other ligands may be extremely high	68
mmon Strategies Used in Many Signaling	
hways	69
Ligand binding can induce conformational changes in, and/or clustering of, the receptor	71
Some receptors require receptor-associated molecules to signal cell activation	71
Ligand-induced receptor clustering can alter receptor location	71
Tyrosine phosphorylation is an early step in many signaling pathways	73
Adapter proteins gather members of signaling pathways	74
Phosphorylation on serine and threonine residues is also a common step in signaling pathways	74
Phosphorylation of membrane phospholipids recruits PH domain-containing proteins to the cell membrane	75
	Receptor-Ligand Interactions Receptor-ligand binding occurs via multiple noncovalent bonds How do we quantitate the strength of receptor- ligand interactions? Interactions between receptors and ligands can be multivalent Receptor and ligand expression can vary during the course of an immune response Local concentrations of cytokines and other ligands may be extremely high mon Strategies Used in Many Signaling hways Ligand binding can induce conformational changes in, and/or clustering of, the receptor Some receptors require receptor-associated molecules to signal cell activation Ligand-induced receptor clustering can alter receptor location Tyrosine phosphorylation is an early step in many signaling pathways Adapter proteins gather members of signaling pathways Phosphorylation on serine and threonine residues is also a common step in signaling pathways Phosphorylation of membrane phospholipids recruits PH domain-containing proteins to the cell membrane

Signal-induced PIP ₂ breakdown by PLC causes an increase in cytoplasmic calcium ion concentration	75
Ubiquitination may inhibit or enhance signal transduction	76
Frequently Encountered Signaling	
Pathways	77
The PLC pathway induces calcium release and PKC activation	77
The Ras/Map kinase cascade activates transcription through AP-1	78
PKC activates the NF-кВ transcription factor	79
The Structure of Antibodies	80
Antibodies are made up of multiple immunoglobulin domains	80
Antibodies share a common structure of two light chains and two heavy chains	81
There are two major classes of antibody light chains	85
There are five major classes of antibody heavy chains	85
Antibodies and antibody fragments can serve as antigens	86
Each of the domains of the antibody heavy and light chains mediate specific functions	88
X-ray crystallography has been used to define	
the structural basis of antigen-antibody binding	90
the structural basis of antigen-antibody binding Signal Transduction in B Cells	90 91
the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Igα/Igβ membrane complex	90 91 91
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Igα/Igβ membrane complex B cells use many of the downstream signaling pathways described above 	90 91 91 92
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors 	90 91 91 92 94
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors T-Cell Receptors and Signaling 	90 91 91 92 94 95
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors T-Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable 	90 91 91 92 94 95
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors T-Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions 	90 91 91 92 94 95
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-lga/lgβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors T-Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 	90 91 91 92 94 95 95 98
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors Tecell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 The T cell co-receptors CD4 and CD8 also bind the MHC 	90 91 92 94 95 95 98 99
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 The T cell co-receptors CD4 and CD8 also bind the MHC Lck is the first tyrosine kinase activated in T cell signaling 	 90 91 92 94 95 98 99 100
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors Stells also receive signals through co-receptors The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 The T-cell co-receptors CD4 and CD8 also bind the MHC Lck is the first tyrosine kinase activated in T cell signaling T cells use downstream signaling strategies similar to those of B cells 	 90 91 91 92 94 95 95 98 99 100 100
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 The T cell co-receptors CD4 and CD8 also bind the MHC Lck is the first tyrosine kinase activated in T cell signaling T cells use downstream signaling strategies similar to those of B cells SUMMARY 	 90 91 91 92 94 95 95 98 99 100 100 101
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Igα/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 The T-cell co-receptors CD4 and CD8 also bind the MHC Lck is the first tyrosine kinase activated in T cell signaling T cells use downstream signaling strategies similar to those of B cells SUMMARY REFERENCES 	 90 91 92 94 95 95 98 99 100 100 101 102
 the structural basis of antigen-antibody binding Signal Transduction in B Cells Antigen binding results in docking of adapter molecules and enzymes into the BCR-Iga/Igβ membrane complex B cells use many of the downstream signaling pathways described above B cells also receive signals through co-receptors Cell Receptors and Signaling The T-cell receptor is a heterodimer with variable and constant regions The T-cell signal transduction complex includes CD3 The T-cell signal transduction complex includes CD3 The T cell co-receptors CD4 and CD8 also bind the MHC Lck is the first tyrosine kinase activated in T cell signaling T cells use downstream signaling strategies similar to those of B cells SUMMARY REFERENCES USEFUL WEB SITES 	 90 91 92 94 95 95 98 99 100 100 101 102 102 102

137

Chapter 4

Receptors and Signaling: Cytokines and Chemokines

General Properties of Cytokines and Chemokines

Cytokines mediate and differentiation	e the activation, proliferation, of target cells	107
Cytokines have nu	merous biological functions	107
Cytokines can elici specific T-cell subp	it and support the activation of populations	107
Cell activation may and adhesion mol	y alter the expression of receptors ecules	109
Cytokines are cond target cells	centrated between secreting and	110
Signaling through a cellular response	multiple receptors can fine tune	110
Six Families of Cyto	okines and Associated	
Receptor Molecule	S	111
Cytokines of the IL signals	-1 family promote proinflammatory	113
Hematopoietin (Cl three-dimensional diversity of functic	ass I) family cytokines share I structural motifs, but induce a ons in target cells	116
The Interferon (Cla first to be discover	ass II) cytokine family was the red	119
Members of the TN development, acti	NF cytokine family can signal vation, or death	123
The IL-17 family is proinflammatory of	a recently discovered, cytokine cluster	127
Chemokines direc through the body	t the migration of leukocytes	129
Cytokine Antagoni	sts	133
The IL-1 receptor a cytokine receptor	intagonist blocks the IL-1	133
Cytokine antagoni of the cytokine rec	sts can be derived from cleavage ceptor	134
Some viruses have cytokine activity	e developed strategies to exploit	134
Cytokine-Related	Diseases	134
Septic shock is rela lethal	atively common and potentially	135
Bacterial toxic sho induction of T-cell	ck is caused by superantigen cytokine secretion	135

Cytokine activity is implicated in lymphoid and myeloid cancers

Cytokine storms may have caused many deaths in the 1918 Spanish influenza

Cytokine-Based Therapies	137
SUMMARY	138
REFERENCES	138
USEFUL WEB SITES	139
STUDY QUESTIONS	140

Chapter 5

105

106

107	Innate Immunity	141
109	Anatomical Barriers to Infection	143
110	Epithelial barriers prevent pathogen entry into the body's interior	143
110	Antimicrobial proteins and peptides kill would-be invaders	145
	Phagocytosis	147
111	Microbes are recognized by receptors on phagocytic cells	147
113	Phagocytosed microbes are killed by multiple mechanisms	151
116	Phagocytosis contributes to cell turnover and the clearance of dead cells	152
440	Induced Cellular Innate Responses	152
119	Cellular pattern recognition receptors activate responses to microbes and cell damage	153
123	Toll-like receptors recognize many types of pathogen molecules	153
127	C-type lectin receptors bind carbohydrates on the surfaces of extracellular pathogens	158
133	Retinoic acid-inducible gene-I-like receptors bind viral RNA in the cytosol of infected cells	160
133	Nod-like receptors are activated by a variety of PAMPs, DAMPs, and other harmful substances	160
134	Expression of innate immunity proteins is induced by PRR signaling	160
	Inflammatory Responses	166
134 1 34	Inflammation results from innate responses triggered by infection, tissue damage, or harmful	1 (7
	substances Proteins of the acute phase response contribute	107
135	to innate immunity and inflammation	168
135	Natural Killer Cells	168
137	Regulation and Evasion of Innate and Inflammatory Responses	169

x Contents

Innate and inflammatory responses can be harmful	169
Innate and inflammatory responses are regulated both positively and negatively	172
Pathogens have evolved mechanisms to evade innate and inflammatory responses	173
Interactions Between the Innate and Adaptive Immune Systems	173
The innate immune system activates and regulates adaptive immune responses	174
Adjuvants activate innate immune responses to increase the effectiveness of immunizations	175
Some pathogen clearance mechanisms are common to both innate and adaptive immune responses	176
Ubiquity of Innate Immunity	176
Plants rely on innate immune responses to combat infections	177
Invertebrate and vertebrate innate immune responses show both similarities and differences	177
SUMMARY	180
REFERENCES	181
USEFUL WEB SITES	182
STUDY QUESTIONS	182

Chapter 6

The Complement System	187
The Major Pathways of Complement Activation	189
The classical pathway is initiated by antibody binding	190
The lectin pathway is initiated when soluble proteins recognize microbial antigens	195
The alternative pathway is initiated in three distinct ways	196
The three complement pathways converge at the formation of the C5 convertase	200
C5 initiates the generation of the MAC	200
The Diverse Functions of Complement	201
Complement receptors connect complement- tagged pathogens to effector cells	201
Complement enhances host defense against infection	204
Complement mediates the interface between innate and adaptive immunities	207
Complement aids in the contraction phase of the immune response	207
Complement mediates CNS synapse elimination	210

The Regulation of Complement Activity	210
Complement activity is passively regulated by protein stability and cell surface composition	n 210
The C1 inhibitor, C1INH, promotes dissociation of C1 components	211
Decay Accelerating Factors promote decay of C3 convertases	211
Factor I degrades C3b and C4b	212
Protectin inhibits the MAC attack	213
Carboxypeptidases can inactivate the anaphylatoxin C3a and C5a	s, 213
Complement Deficiencies	213
Microbial Complement Evasion Strategies	214
Some pathogens interfere with the first step of immunoglobulin-mediated complement activation	215
Microbial proteins bind and inactivate complement proteins	215
Microbial proteases destroy complement proteins	215
Some microbes mimic or bind complement regulatory proteins	215
The Evolutionary Origins of the Complement System	215
SLIMMARY	210
REFERENCES	219
USEFUL WEB SITES	220
STUDY QUESTIONS	221

Chapter 7

The Organization and Expression
of Lymphocyte Receptor Genes225

The Puzzle of Immunoglobulin Gene Structure	226
Investigators proposed two early theoretical models of antibody genetics	226
Breakthrough experiments revealed that multiple gene segments encode the light chain	227
Multigene Organization of Ig Genes	231
Kappa light-chain genes include V, J, and C segments	231
Lambda light-chain genes pair each J segment with a particular C segment	231
Heavy-chain gene organization includes V_{H} , D, J $_{\text{J}}$, and C_{H} segments	232

Contents

The	e Mechanism of V(D)J Recombination	232
	Recombination is directed by signal sequences	233
	Gene segments are joined by the RAG1/2 recombinase combination	234
	V(D)J recombination results in a functional Ig variable region gene	235
	V(D)J recombination can occur between segments transcribed in either the same or opposite directions	239
	Five mechanisms generate antibody diversity in naïve B cells	239
B-C	ell Receptor Expression	242
	Allelic exclusion ensures that each B cell synthesizes only one heavy chain and one light chain	242
	Receptor editing of potentially autoreactive receptors occurs in light chains	243
	lg gene transcription is tightly regulated	244
	Mature B cells express both IgM and IgD antibodies by a process that involves mRNA splicing	246
T-C	ell Receptor Genes and Expression	247
	Understanding the protein structure of the TCR was critical to the process of discovering the genes	247
	The β-chain gene was discovered simultaneously in two different laboratories	249
	A search for the $\alpha\text{-chain}$ gene led to the $\gamma\text{-chain}$ gene instead	250
	TCR genes undergo a process of rearrangement very similar to that of Ig genes	251
	TCR expression is controlled by allelic exclusion	253
	TCR gene expression is tightly regulated	253
	SUMMARY	255
	REFERENCES	256
	USEFUL WEB SITES	257
	STUDY QUESTIONS	258

Chapter 8

The Major Histocompatibility Complex and Antigen Presentation

The Structure and Function of MHC Molecules 262

Class I molecules have a glycoprotein heavy chain and a small protein light chain

Class II molecules have two non-identical glycoprotein chains	262
Class I and II molecules exhibit polymorphism in the region that binds to peptides	263
General Organization and Inheritance of the MHC	267
The MHC locus encodes three major classes of molecules	268
The exon/intron arrangement of class I and II genes reflects their domain structure	270
Allelic forms of MHC genes are inherited in linked groups called haplotypes	270
MHC molecules are codominantly expressed	271
Class I and class II molecules exhibit diversity at both the individual and species levels	273
MHC polymorphism has functional relevance	276
The Role of the MHC and Expression Patterns	277
MHC molecules present both intracellular and extracellular antigens	278
MHC class I expression is found throughout the body	278
Expression of MHC class II molecules is primarily restricted to antigen-presenting cells	279
MHC expression can change with changing conditions	279
T cells are restricted to recognizing peptides presented in the context of self-MHC alleles	281
Evidence suggests different antigen processing and presentation pathways	284
The Endogenous Pathway of Antigen Processing and Presentation	285
Peptides are generated by protease complexes called proteasomes	285
Peptides are transported from the cytosol to the RER	285
Chaperones aid peptide assembly with MHC class I molecules	286
The Exogenous Pathway of Antigen Processing and Presentation	288
Peptides are generated from internalized molecules in endocytic vesicles	288
The invariant chain guides transport of class II MHC molecules to endocytic vesicles	289
Peptides assemble with class II MHC molecules by displacing CLIP	289
Cross-Presentation of Exogenous Antigens	291

xi

xii Contents

Dendritic cells appear to be the primary cross- presenting cell type	292
Mechanisms and Functions of Cross-Presentation	292
Presentation of Nonpeptide Antigens	293
SUMMARY	295
REFERENCES	295
USEFUL WEB SITES	296
STUDY QUESTIONS	296

Chapter 9

T-Cell Development	299
Early Thymocyte Development	301
Thymocytes progress through four double-negative stages	301
Thymocytes can express either TCRa β or TCR $\gamma\delta$ receptors	302
DN thymocytes undergo β -selection, which results in proliferation and differentiation	303
Positive and Negative Selection	304
Thymocytes "learn" MHC restriction in the thymus	305
T cells undergo positive and negative selection	305
Positive selection ensures MHC restriction	307
Negative selection (central tolerance) ensures self-tolerance	310
The selection paradox: Why don't we delete all cells we positively select?	312
An alternative model can explain the thymic selection paradox	313
Do positive and negative selection occur at the same stage of development, or in sequence?	314
Lineage Commitment	314
Several models have been proposed to explain lineage commitment	314
Double-positive thymocytes may commit to other types of lymphocytes	316
Exit from the Thymus and Final Maturation	316
Other Mechanisms That Maintain Self-Tolerance	316
T _{REG} cells negatively regulate immune responses	317
Peripheral mechanisms of tolerance also protect against autoreactive thymocytes	318
Apoptosis	318

Apoptosis allows cells to die without triggering an inflammatory response	318
Different stimuli initiate apoptosis, but all activate caspases	318
Apoptosis of peripheral T cells is mediated by the extrinsic (Fas) pathway	320
TCR-mediated negative selection in the thymus induces the intrinsic (mitochondria-mediated) apoptotic pathway	321
Bcl-2 family members can inhibit or induce apoptosis	321
SUMMARY	324
REFERENCES	325
USEFUL WEB SITES	326
STUDY QUESTIONS	327

Chapter 10

B-Cell Development	329
The Site of Hematopoiesis	330
The site of B-cell generation changes during gestation	n 330
Hematopoiesis in the fetal liver differs from that in the adult bone marrow	332
B-Cell Development in the Bone Marrow	332
The stages of hematopoiesis are defined by cell- surface markers, transcription-factor expression, and immunoglobulin gene rearrangements	334
The earliest steps in lymphocyte differentiation culminate in the generation of a common lymphoid progenitor	e 337
The later steps of B-cell development result in commitment to the B-cell phenotype	339
Immature B cells in the bone marrow are exquisitely sensitive to tolerance induction	344
Many, but not all, self-reactive B cells are deleted within the bone marrow	345
B cells exported from the bone marrow are still functionally immature	345
Mature, primary B-2 B cells migrate to the lymphoid follicles	349
The Development of B-1 and Marginal-Zone	
B Cells	351
B-1 B cells are derived from a separate developmental lineage	351
Marginal-zone cells share phenotypic and functional characteristics with B-1 B cells and arise at the T2 stage	352
Comparison of B- and T-Cell Development	352

SUMMARY	354
REFERENCES	355
USEFUL WEB SITES	355
STUDY QUESTIONS	356

Chapter 11

T-Cell Activation, Differentiation, and Memory 357

T-Cell Activation and the Two-Signal Hypothesis	358
Costimulatory signals are required for optimal T-cell activation and proliferation	359
Clonal anergy results if a costimulatory signal is absent	363
Cytokines provide Signal 3	364
Antigen-presenting cells have characteristic costimulatory properties	365
Superantigens are a special class of T-cell activators	366
T-Cell Differentiation	368
Helper T cells can be divided into distinct subsets	370
The differentiation of T helper cell subsets is regulated by polarizing cytokines	371
Effector T helper cell subsets are distinguished by three properties	372
Helper T cells may not be irrevocably committed to a lineage	378
Helper T-cell subsets play critical roles in immune health and disease	378
T-Cell Memory	379
Naïve, effector, and memory T cells display broad differences in surface protein expression	379
T_{CM} and T_{EM} are distinguished by their locale and commitment to effector function	380
How and when do memory cells arise?	380
What signals induce memory cell commitment?	381
Do memory cells reflect the heterogeneity of effector cells generated during a primary response?	381
Are there differences between CD4 $^{+}$ and CD8 $^{+}$ memory T cells?	381
How are memory cells maintained over many years?	381
SUMMARY	381
REFERENCES	382
USEFUL WEB SITES	383
STUDY QUESTIONS	383

Chapter 12

B-Cell Activation, Differentiation,	,
and Memory Generation	385
T-Dependent B-Cell Responses	388
T-dependent antigens require T-cell help to generate an antibody response	388
Antigen recognition by mature B cells provides a survival signal	389
B cells encounter antigen in the lymph nodes and spleen	390
B-cell recognition of cell-bound antigen results in membrane spreading	391
What causes the clustering of the B-cell receptors upon antigen binding?	392
Antigen receptor clustering induces internalization and antigen presentation by the B cell	393
Activated B cells migrate to find antigen-specific T cells	393
Activated B cells move either into the extra- follicular space or into the follicles to form germinal centers	395
Plasma cells form within the primary focus	395
Other activated B cells move into the follicles and initiate a germinal center response	396
Somatic hypermutation and affinity selection occur within the germinal center	398
Class switch recombination occurs within the germinal center after antigen contact	401
Most newly generated B cells are lost at the end of the primary immune response	403
Some germinal center cells complete their maturation as plasma cells	403
B-cell memory provides a rapid and strong response to secondary infection	404
-Independent B-Cell Responses	406
T-independent antigens stimulate antibody production without the need for T-cell help	406
Two novel subclasses of B cells mediate the response to T-independent antigens	407
legative Regulation of B Cells	411
Negative signaling through CD22 shuts down unnecessary BCR signaling	411
Negative signaling through the FcyRIIb receptor inhibits B-cell activation	411
B-10 B cells act as negative regulators by secreting IL-10	411

xiv Contents

SUMMARY	412
REFERENCES	413
USEFUL WEB SITES	414
STUDY QUESTIONS	414

Chapter 13

Effector Responses: Cell-and Antibody-Mediated Immunity 415 **Antibody-Mediated Effector Functions** 416 Antibodies mediate the clearance and destruction of pathogen in a variety of ways 416 Antibody isotypes mediate different effector functions 419 Fc receptors mediate many effector functions of antibodies 423 **Cell-Mediated Effector Responses** 427 Cytotoxic T lymphocytes recognize and kill infected or tumor cells via T-cell receptor activation 428 Natural killer cells recognize and kill infected cells and tumor cells by their absence of MHC class I 435 NKT cells bridge the innate and adaptive immune 441 systems **Experimental Assessment of Cell-Mediated** Cytotoxicity 444

Co-culturing T cells with foreign cells s the mixed-lymphocyte reaction	timulates 444
CTL activity can be demonstrated by c lympholysis	ell-mediated 445
The graft-versus-host reaction is an in of cell-mediated cytotoxicity	vivo indication 446
SUMMARY	446
REFERENCES	447
USEFUL WEB SITES	448
STUDY QUESTIONS	448

Chapter 14

The Immune Response in Space and Time	451
Immune Cell Behavior before Antigen Is Introduced	455
Naïve lymphocytes circulate between secondary and tertiary lymphoid tissues	455

Naïve lymphocytes sample stromal cells in the lymph nodes	461
Naïve lymphocytes browse for antigen along reticular networks in the lymph node	461
Immune Cell Behavior during the Innate Immune Response	464
Antigen-presenting cells travel to lymph nodes and present processed antigen to T cells	465
Unprocessed antigen also gains access to lymph- node B cells	465
Immune Cell Behavior during the Adaptive Immune Response	467
Naïve CD4 ⁺ T cells arrest their movements after engaging antigens	468
B cells seek help from CD4 ⁺ T cells at the border between the follicle and paracortex of the Lymph Node	468
Dynamic imaging approaches have been used to address a controversy about B-cell behavior in germinal centers	470
CD8 ⁺ T cells are activated in the lymph node via a multicellular interaction	471
Activated lymphocytes exit the lymph node and recirculate	472
A summary of our current understanding	472
The immune response contracts within 10 to 14 days	474
Immune Cell Behavior in Peripheral Tissues	
Chemokine receptors and integrins regulate homing of effector lymphocytes to peripheral tissues	474
Effector lymphocytes respond to antigen in multiple tissues	475
SUMMARY	480
REFERENCES	481
USEFUL WEB SITES	482
STUDY QUESTIONS	482

Chapter 15

Allergy, Hypersensitivities, and Chronic Inflammation 485 Allergy: A Type I Hypersensitivity Reaction 486 IgE antibodies are responsible for type I hypersensitivity 487 Many allergens can elicit a type I response 487

 \mbox{lgE} antibodies act by cross-linking Fcreceptors on the surfaces of innate immune cells

IgE receptor signaling is tightly regulated	491
Innate immune cells produce molecules responsible for type I hypersensitivity symptoms	491
Type I hypersensitivities are characterized by both early and late responses	494
There are several categories of type I hypersensitivity reactions	494
There is a genetic basis for type I hypersensitivity	497
Diagnostic tests and treatments are available for type I hypersensitivity reactions	498
The hygiene hypothesis has been advanced to explain increases in allergy incidence	501
Antibody-Mediated (Type II) Hypersensitivity Reactions	501
Transfusion reactions are an example of type II	
hypersensitivity	501
Hemolytic disease of the newborn is caused by type II reactions	503
Hemolytic anemia can be drug induced	504
Immune Complex-Mediated (Type III)	
Hypersensitivity	505
Immune complexes can damage various tissues	505
Immune complex-mediated hypersensitivity can resolve spontaneously	505
Autoantigens can be involved in immune complex- mediated reactions	506
Arthus reactions are localized type III hypersensitivity reactions	506
Delayed-Type (Type IV) Hypersensitivity (DTH)	506
The initiation of a type IV DTH response involves sensitization by antigen	507
The effector phase of a classical DTH response is induced by second exposure to a sensitizing antigen	507
The DTH reaction can be detected by a skin test	508
Contact dermatitis is a type IV hypersensitivity response	508
Chronic Inflammation	509
Infections can cause chronic inflammation	509
There are noninfectious causes of chronic inflammatic	n 510
Obesity is associated with chronic inflammation	510
Chronic inflammation can cause systemic disease	510
SUMMARY	513
REFERENCES	515

USEFUL WEB SITES

STUDY QUESTIONS

Chapter 16

Tolerance, Autoimmunity, and Transplantation	517
Establishment and Maintenance of Tolerance	518
Antigen sequestration is one means to protect self antigens from attack	519
Central tolerance limits development of autoreactive T cells and B cells	520
Peripheral tolerance regulates autoreactive cells in the circulation	520
Autoimmunity	525
Some autoimmune diseases target specific organs	526
Some autoimmune diseases are systemic	529
Both intrinsic and extrinsic factors can favor susceptibility to autoimmune disease	531
Several possible mechanisms have been proposed for the induction of autoimmunity	533
Autoimmune diseases can be treated by general or pathway-specific immunosuppression	534
Transplantation Immunology	536
Graft rejection occurs based on immunologic principles	536
Graft rejection follows a predictable clinical course	541
Immunosuppressive therapy can be either general or target-specific	543
Immune tolerance to allografts is favored in certain instances	545
Some organs are more amenable to clinical transplantation than others	546
SUMMARY	549
REFERENCES	550
USEFUL WEB SITES	551
STUDY QUESTIONS	551

Chapter 17

515

516

Infectious Diseases and Vaccines 553 The Importance of Barriers to Infection and the Innate Response 554 **Viral Infections** 555 Many viruses are neutralized by antibodies 556 Cell-mediated immunity is important for viral control and clearance 556

xvi Contents

	Viruses employ several different strategies to evade host defense mechanisms	556
	Influenza has been responsible for some of the worst pandemics in history	557
Ba	cterial Infections	560
	Immune responses to extracellular and intracellular bacteria can differ	560
	Bacteria can evade host defense mechanisms at several different stages	563
	Tuberculosis is primarily controlled by $CD4^+T$ cells	564
	Diphtheria can be controlled by immunization with inactivated toxoid	565
Pa	rasitic Infections	565
	Protozoan parasites account for huge worldwide disease burdens	565
	A variety of diseases are caused by parasitic worms (helminths)	567
Fu	ngal Infections	569
	Innate immunity controls most fungal infections	569
	Immunity against fungal pathogens can be acquired	571
Em	nerging and Re-emerging Infectious Diseases	571
	Some noteworthy new infectious diseases have appeared recently	572
	Diseases may re-emerge for various reasons	573
Va	ccines	574
	Protective immunity can be achieved by active or passive immunization	574
	There are several vaccine strategies, each with unique advantages and challenges	578
	Conjugate or multivalent vaccines can improve immunogenicity and outcome	583
	Adjuvants are included to enhance the immune response to a vaccine	585
	SUMMARY	586
	REFERENCES	587
	USEFUL WEB SITES	588
	STUDY OUESTIONS	588

Chapter 18

Immunodeficiency Disorders	593
Primary Immunodeficiencies	
Combined immunodeficiencies disrupt adaptive immunity	597

B-cell immunodeficiencies exhibit depressed production of one or more antibody isotypes	601
Disruptions to innate components may also impact adaptive responses	601
Complement deficiencies are relatively common	603
Immunodeficiency that disrupts immune regulation can manifest as autoimmunity	603
Immunodeficiency disorders are treated by replacement therapy	604
Animal models of immunodeficiency have been used to study basic immune function	604
Secondary Immunodeficiencies	606
HIV/AIDS has claimed millions of lives worldwide	607
The retrovirus HIV-1 is the causative agent of AIDS	608
HIV-1 is spread by intimate contact with infected body fluids	610
In vitro studies have revealed the structure and life cycle of HIV-1	612
Infection with HIV-1 leads to gradual impairment of immune function	615
Active research investigates the mechanism of progression to AIDS	616
Therapeutic agents inhibit retrovirus replication	619
A vaccine may be the only way to stop the HIV/AIDS epidemic	621
SUMMARY	623
REFERENCES	623
USEFUL WEB SITES	624
STUDY QUESTIONS	624

Chapter 19

Cancer and the Immune System	627
Terminology and Common Types of Cancer	627
Malignant Transformation of Cells	628
DNA alterations can induce malignant transformation	629
The discovery of oncogenes paved the way for our understanding of cancer induction	629
Genes associated with cancer control cell proliferation and survival	630
Malignant transformation involves multiple steps	633
Tumor Antigens	634
Tumor-specific antigens are unique to tumor cells	636
Tumor-associated antigens are normal cellular proteins with unique expression patterns	636

Contents xvii

The Immune Response to Cancer 638 Immunoediting both protects against and promotes tumor growth 639 Key immunologic pathways mediating tumor eradication have been identified 639 Some inflammatory responses can promote cancer 642 Some tumor cells evade immune recognition and activation 643 **Cancer Immunotherapy** 644 Monoclonal antibodies can be targeted to tumor cells 644 Cytokines can be used to augment the immune response to tumors 646 Tumor-specific T cells can be expanded and reintroduced into patients 647 New therapeutic vaccines may enhance the anti-tumor immune response 647 Manipulation of costimulatory signals can improve cancer immunity 647 Combination cancer therapies are yielding surprising results 648 **SUMMARY** 649 REFERENCES 650 **USEFUL WEB SITES** 650 STUDY QUESTIONS 651

Chapter 20

Experimental Systems and Methods

Antibody Generation	654
Polyclonal antibodies are secreted by multiple clones of antigen-specific B cells	654
A monoclonal antibody is the product of a single stimulated B cell	654
Monoclonal antibodies can be modified for use in the laboratory or the clinic	655
Immunoprecipitation- Based Techniques	656
Immunoprecipitation can be performed in solution	656
Immunoprecipitation of soluble antigens can be performed in gel matrices	656
Immunoprecipitation allows characterization of cell-bound molecules	657
Agglutination Reactions	658

653

any

658

Hemagglutination reactions can be used to detect antigen conjugated to the surface of red blood cells

the presence of viruses and of untivirui untibodies	658
Bacterial agglutination can be used to detect antibodies to bacteria	659
Antibody Assays Based on Antigen Binding to Solid-Phase Supports	659
Radioimmunoassays are used to measure the concentrations of biologically relevant proteins and hormones in bodily fluids	659
ELISA assays use antibodies or antigens covalently bound to enzymes	660
The design of an ELISA assay must consider various methodological options	662
ELISPOT assays measure molecules secreted by individual cells	663
Western blotting can identify a specific protein in a complex protein mixture	664
Methods to Determine the Affinity of Antigen- Antibody Interactions	664
Equilibrium dialysis can be used to measure antibody affinity for antigen	665
Surface plasmon resonance is commonly used for measurements of antibody affinity	667
Microscopic Visualization of Cells and Subcellular Structures	668
Immunocytochemistry and immunohistochemistry use enzyme-conjugated antibodies to create images	
of fixed tissues	668
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens	668 669
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques	668 669 669
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules	668 669 669 669
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules Immunofl uorescence microscopy uses antibodies conjugated with fluorescent dyes	668 669 669 669
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules Immunofl uorescence microscopy uses antibodies conjugated with fluorescent dyes Confocal fluorescence microscopy provides three- dimensional images of extraordinary clarity	668 669 669 669 669 670
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules Immunofl uorescence microscopy uses antibodies conjugated with fluorescent dyes Confocal fluorescence microscopy provides three- dimensional images of extraordinary clarity Multiphoton fluorescence microscopy is a variation of confocal microscopy	668 669 669 669 669 670
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules Immunofl uorescence microscopy uses antibodies conjugated with fluorescent dyes Confocal fluorescence microscopy provides three- dimensional images of extraordinary clarity Multiphoton fluorescence microscopy is a variation of confocal microscopy Intravital imaging allows observation of immune responses in vivo	668 669 669 669 669 670 670 671
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules Immunofl uorescence microscopy uses antibodies conjugated with fluorescent dyes Confocal fluorescence microscopy provides three- dimensional images of extraordinary clarity Multiphoton fluorescence microscopy is a variation of confocal microscopy Intravital imaging allows observation of immune responses in vivo	 668 669 669 669 669 670 670 671 672
Immunoelectron microscopy uses gold beads to visualize antibody-bound antigens Immunofluorescence-Based Imaging Techniques Fluorescence can be used to visualize cells and molecules Immunofl uorescence microscopy uses antibodies conjugated with fluorescent dyes Confocal fluorescence microscopy provides three- dimensional images of extraordinary clarity Multiphoton fluorescence microscopy is a variation of confocal microscopy Intravital imaging allows observation of immune responses in vivo Flow Cytometry Magnetic Activated Cell Sorting	 668 669 669 669 670 670 671 672 677

Tritiated (³H) thymidine uptake was one of the first methods used to assess cell division

xviii Contents

	Colorimetric assays for cell division are rapid and eliminate the use of radioactive isotopes	678
	Bromodeoxyuridine-based assays for cell division use antibodies to detect newly synthesized DNA	678
	Propidium iodide enables analysis of the cell cycle status of cell populations	678
	Carboxyfluorescein succinimidyl ester can be used to follow cell division	679
Ass	ays of Cell Death	679
	The ⁵¹ Cr release assay was the first assay used to measure cell death	679
	Fluorescently labeled annexin V measures phosphatidyl serine in the outer lipid envelope of apoptotic cells	680
	The TUNEL assay measures apoptotically generated DNA fragmentation	680
	Caspase assays measure the activity of enzymes involved in apoptosis	681
Bio Sig	chemical Approaches Used to Elucidate nal Transduction Pathways	681
	Biochemical inhibitors are often used to identify intermediates in signaling pathways	681
	Many methods are used to identify proteins that interact with molecules of interest	682
Wh	ole Animal Experimental Systems	682
	Animal research is subject to federal guidelines that protect nonhuman research subjects	682
	Inbred strains can reduce experimental variation	683
	Congenic resistant strains are used to study the effects of particular gene loci on immune responses	684
	Adoptive transfer experiments allow in vivo examination of isolated cell populations	684

Transgenic animals carry genes that have been artificially introduced	684
Knock-in and knockout technologies replace an endogenous with a nonfunctional or engineered gene copy	685
The cre/lox system enables inducible gene deletion in selected tissues	687
SUMMARY	689
REFERENCES	690
USEFUL WEB SITES	690
STUDY QUESTIONS	691

Appendix I

CD Antigens	A-1
-------------	-----

Appendix II

Cytokines	B-1

Appendix III

Chemokines and ChemokineReceptorsC-1

Glossary G-1

Answers to Study Questions	AN-1	
Index	I-1	

Feature Boxes in Kuby 7e

Clinical Focus

Box 1.1	Vaccine Controversy: What's Truth and What's		
	Myth? p. 5		
Box 1.2	Passive Antibodies and the Iditarod p. 8		
Box 1.3	The Hygiene Hypothesis p. 20		
Box 2.2	Stem Cells—Clinical Uses and Potential p. 42		
Box 3.2	Defects in the B-Cell Signaling Protein Btk Lead		
	to X-Linked Agammaglobulinemia p. 93		
Box 4.2	Therapy with Interferons p. 120		
Box 4.4	Cytokines and Obesity p. 136		
Box 5.2	Genetic Defects in Components of Innate		
	and Inflammatory Responses Associated with		
	Disease p. 170		
Box 6.2	The Complement System as a Therapeutic		
	Target p. 208		
Box 7.3	Some Immunodeficiencies Result from Impaired		
	Receptor Gene Recombination p. 255		
Box 8.2	MHC Alleles and Susceptibility to Certain		
	Diseases p. 277		
Box 8.4	Deficiencies in TAP Can Lead to Bare		
	Lymphocyte Syndrome p. 287		
Box 9.2	How Do T Cells That Cause Type 1 Diabetes		
	Escape Negative Selection? p. 311		
Box 9.3	Failure of Apoptosis Causes Defective		
	Lymphocyte Homeostasis p. 322		
Box 10.1	B-Cell Development in the Aging		
	Individual p. 333		
Box 11.2	Costimulatory Blockade p. 364		
Box 11.4	What a Disease Reveals about the Physiological		
	Role of T _H 17 Cells p. 376		
Box 13.1	Monoclonal Antibodies in the Treatment of		
	Cancer p. 420		
Box 15.2	The Genetics of Asthma and Allergy p. 498		
Box 15.3	Type 2 Diabetes, Obesity, and		
	Inflammation p. 511		
Box 16.1	It Takes Guts to Be Tolerant p. 523		
Box 16.2	Why Are Women More Susceptible Than Men		
	to Autoimmunity? Gender Differences in		
	Autoimmune Disease p. 528		
Box 16.4	Is There a Clinical Future for		
	Xenotransplantation? p. 548		
Box 17.1	The 1918 Pandemic Influenza Virus: Should It		
	Publish or Perish? p. 557		
Box 18.1	Prevention of Infant HIV Infection by Anti-		
	Retroviral Treatment p. 610		
Box 19.1	A Vaccine to Prevent Cervical Cancer, and		
	More p. 637		
Evolution			
Box 2.4	Variations on Anatomical Themes p. 57		

- Box 5.3 Plant Innate Immune Responses p. 178
- Box 7.2 Evolution of Recombined Lymphocyte Receptors p. 240
- Box 8.1 The Sweet Smell of Diversity p. 275

Classic Experiment

- Box 2.1 Isolating Hematopoietic Stem Cells p. 29
- Box 2.3 The Discovery of a Thymus—and Two p. 46
- Box 3.1 The Elucidation of Antibody Structure p. 82
- Box 3.3 The Discovery of the T-Cell Receptor p. 96
- Box 6.1 The Discovery of Properdin p. 198
- Box 7.1 Hozumi and Tonegawa's Experiment: DNA Recombination Occurs in immunoglobulin Genes in Somatic Cells p. 227
- Box 8.3 Demonstration of the Self-MHC Restriction of $CD8^+$ T Cells p. 282
- Box 9.1 Insights about Thymic Selection from the First TCR Transgenic Mouse Have Stood the Test of Time p. 308
- Box 10.3 The Stages of B-Cell Development: Characterization of the Hardy Fractions p. 342
- Box 11.1 Discovery of the First Costimulatory Receptor: CD28 p. 362
- Box 12.1 Experimental Proof That Somatic Hypermutation and Antigen- Induced Selection Occurred Within the Germinal Centers p. 399
- Box 13.2 Rethinking Immunological Memory: NK Cells Join Lymphocytes as Memory-Capable Cells p. 442
- Box 15.1 The Discovery and Identification of IgE as the Carrier of Allergic Hypersensitivity p. 488
- Box 16.3 Early Life Exposure to Antigens Favors Tolerance Induction p. 546

Advances

- Box 4.1 Methods Used to Map the Secretome p. 111
- Box 4.3 How Does Chemokine Binding to a Cell-Surface Receptor Result in Cellular Movement Along the Chemokine Gradient? p. 130
- Box 5.1 Inflammasomes p. 162
- Box 6.3 Staphylococcus aureus Employs Diverse Methods to Evade Destruction by the Complement System p. 216
- Box 10.2 The Role of miRNAs in the Control of B-Cell Development p. 336
- Box 11.3 How Many TCR Complexes Must Be Engaged to Trigger T-Cell Activation? p. 368
- Box 12.2 New Ideas on B-Cell Help: Not All Cells That Help B Cells Make Antibodies Are T Cells p. 408
- Box 14.1 Dynamic Imaging Techniques p. 452
- Box 14.2 Molecular Regulation of Cell Migration Between and Within Tissues p. 456
- Box 17.2 A Prime and Pull Vaccine Strategy for Preventing Sexually Transmitted Diseases p. 586
- Box 20.1 Flow Cytometry Under the Hood p. 674

Preface

Like all of the previous authors of this book, we are dedicated to the concept that immunology is best taught and learned in an experimentally-based manner, and we have retained that emphasis with this edition. It is our goal that students should complete an immunology course not only with a firm grasp of content, but also with a clear sense of *how* key discoveries were made, what interesting questions remain, and how they might best be answered. We believe that this approach ensures that students both master fundamental immunological concepts and internalize a vision of immunology as an active and ongoing process. Guided by this vision, the new edition has been extensively updated to reflect the recent advances in all aspects of our discipline.

New Authorship

As a brand-new team of authors, we bring experience in both research and undergraduate teaching to the development of this new edition, which continues to reflect a dedication to pedagogical excellence originally modeled by Janis Kuby. We remain deeply respectful of Kuby's unique contribution to the teaching of immunology and hope and trust that this new manifestation of her creation will simply add to her considerable legacy.

Understanding Immunology As a Whole

We recognize that the immune system is an integrated network of cells, molecules, and organs, and that each component relies on the rest to function properly. This presents a pedagogical challenge because to understand the whole, we must attain working knowledge of many related pieces of information, and these do not always build upon each other in simple linear fashion. In acknowledgment of this challenge, this edition presents the "big picture" twice; first as an introductory overview to immunity, then, thirteen chapters later, as an integration of the details students have learned in the intervening text.

Specifically, Chapter 1 has been revised to make it more approachable for students who are new to immunology. The chapter provides a short historical background to the field and an introduction to some of the key players and their roles in the immune response, keeping an eye on fundamental concepts (Overview Figure 1-9). A new section directly addresses some of the biggest conceptual hurdles, but leaves the cellular and molecular details for later chapters.

OVERVIEW FIGURE 1-9 Collaboration between innate and adaptive immunity in resolving an infection.

A new capstone chapter (Chapter 14) integrates the events of an immune response into a complete story, with particular reference to the advanced imaging techniques that have become available since the writing of the previous edition. In this way, the molecular and cellular details presented in Chapters 2-13 are portrayed in context, a moving landscape of immune response events in time and space (Figure 14-5).

FIGURE 14-5 A T cell (blue) on a fibroblastic reticular network (red and green) in the lymph node.

Focus on the Fundamentals

The order of chapters in the seventh edition has been revised to better reflect the sequence of events that occurs naturally during an immune response in vivo. This offers instructors the opportunity to lead their students through the steps of an immune response in a logical sequence, once they have learned the essential features of the tissues, cells, molecular structures, ligand-receptor binding interactions, and signaling pathways necessary for the functioning of the immune system. The placement of innate immunity at the forefront of the immune response enables it to take its rightful place as the first, and often the only, aspect of immunity that an organism needs to counter an immune insult. Similarly, the chapter on complement is located within the sequence in a place that highlights its function as a bridge between innate and adaptive immune processes. However, we recognize that a course in immunology is approached differently by each instructor. Therefore, as much as possible, we have designed each of the chapters so that it can stand alone and be offered in an alternative order.

Challenging All Levels

While this book is written as a text for students new to immunology, it is also our intent to challenge students to reach deeply into the field and to appreciate the connections with other aspects of biology. Instead of reducing difficult topics to vague and simplistic forms, we instead present them with the level of detail and clarity necessary to allow the beginning student to find and understand information they may need in the future. This offers the upper level student a foundation from which they can progress to the investigation of advances and controversies within the current immunological literature. Supplementary focus boxes have been used to add nuance or detail to discussions of particular experiments or ideas without detracting from the flow of information. These boxes, which address experimental approaches, evolutionary connections, clinical aspects, or advanced material, also allow instructors to tailor their use appropriately for individual courses. They provide excellent launching points for more intensive in class discussions relevant to the material.

Some of the most visible changes and improvements include:

- A rewritten chapter on the cells and organs of the immune system (Chapter 2) that includes up to date images reflecting our new understanding of the microenvironments where the host immune system develops and responds.
- The consolidation of signaling pathways into two chapters: Chapter 3 includes a basic introduction to ligand:receptor interactions and principles of receptor

signaling, as well as to specific molecules and pathways involved in signaling through antigen receptors. Chapter 4 includes a more thorough introduction to the roles of cytokines and chemokines in the immune response.

- An expanded and updated treatment of innate immunity (Chapter 5), which now includes comprehensive coverage of the many physical, chemical, and cellular defenses that constitute the innate immune system, as well as the ways in which it activates and regulates adaptive immunity.
- Substantial rewriting of chapters concerned with complement (Chapter 6) and antigen receptor gene rearrangement (Chapter 7). These chapters have been extensively revised for clarity in both text and figures. The description of the complement system has been updated to include the involvement of complement proteins in both innate and adaptive aspects of immunity.
- A restructured presentation of the MHC, with the addition of new information relevant to cross-presentation pathways (Chapter 8) (Figure 8-22b).

(b) DC cross-presentation and activation of CTL

FIGURE 8-22b Exogenous antigen activation of naïve T_c cells requires DC licensing and cross-presentation

- The dedication of specialized chapters concerned with T cell development and T cell activation (Chapters 9 and Chapter 11, respectively). Chapter 11 now includes current descriptions of the multiple helper T cell subsets that regulate the adaptive immune response.
- Substantially rewritten chapters on B cell development and B cell activation (Chapters 10 and 12, respectively) that address the physiological locations as well as the nature of the interacting cells implicated in these processes.
- An updated discussion of the role of effector cells and molecules in clearing infection (Chapter 13), including a more thorough treatment of NK and NKT cells.

- A new chapter that describes advances in understanding and visualizing the dynamic behavior and activities of immune cells in secondary and tertiary tissue (Chapter 14).
- Substantial revision and updating of the clinical chapters (Chapters 15-19) including the addition of several new clinically relevant focus boxes.
- Revised and updated versions of the final methods chapter (Chapter 20), and the appendices of CD antigens, chemokines, and cytokines and their receptors.

Throughout the book, we attempt to provide a "big picture" context for necessary details in a way that facilitates greater student understanding.

Recent Advances and Other Additions

Immunology is a rapidly growing field, with new discoveries, advances in techniques, and previously unappreciated connections coming to light every day. The 7th edition has been thoroughly updated throughout, and now integrates the following new material and concepts:

- New immune cell types and subtypes, as well as the phenotypic plasticity that is possible between certain subtypes of immune cells.
- A greater appreciation for the wide range of mechanisms responsible for innate immunity and the nature and roles of innate responses in sensing danger, inducing inflammation, and shaping the adaptive response (Figure 5-18).

TCR S MHC II with peptide

FIGURE 5-18 Differential signaling through dendritic cell PRRs influences helper T cell functions.

• Regulation of immunity, including new regulatory cell types, immunosuppressive chemical messengers and the roles these play, for example, in tolerance and in the nature of responses to different types of antigens (Figure 9-10).

FIGURE 9-10 How regulatory T cells inactivate traditional T cells.

- The roles of the microbiome and commensal organisms in the development and function of immunity, as well as the connections between these and many chronic diseases.
- A new appreciation for the micro environmental substructures that guide immune cell interactions with antigen and with one another (Figure 14-11a).

Antigen delivery to T cells

• Many technical advances, especially in the areas of imaging and sequencing, which have collectively enhanced our understanding of immune function and cellular interactions, allowing us to view the immune response in its natural anatomical context, and in real time (see Figure 14-5).

Connections to the Bench, the Clinic, and Beyond

We have made a concerted effort in the 7th edition to integrate experimental and clinical aspects of immunology into the text. In Chapter 2, illustrations of immune cells and tissues are shown alongside histological sections or, where possible, electron micrographs, so students can see what they actually look like. Throughout the text, experimental data are used to demonstrate the bases for our knowledge (Figure 3-4b), and the clinical chapters at the end of the book (Chapters 15 through 19) describe new advances, new challenges, and newly appreciated connections between the immune system and disease.

FIGURE 3-4b Targeted delivery of cytokines (pink).

Featured Boxes

Associated with each chapter are additional boxed materials that provide specialized information on historically-important studies (Classic Experiments) that changed the way immunologists viewed the field, noteworthy new breakthroughs (Advances) that have occurred since the last edition, the clinical relevance of particular topics (Clinical Focus) and the evolution of aspects of immune functioning (Evolution). Examples of such boxes are "The Prime and Pull Vaccine strategy," "Genetic defects in components of innate and inflammatory responses associated with disease," "The role of miRNAs in the control of B cell development" and an updated "Stem cells: Clinical uses and potential." We have involved our own undergraduate students in the creation of some of these boxes, which we believe have greatly benefitted from their perspective on how to present interesting material effectively to their fellow students.

Critical Thinking and Data Analysis

Integration of experimental evidence throughout the book keeps students focused on the how and why. Detailed and clear descriptions of the current state of the field provide students with the knowledge, skills, and vocabulary to read critically in the primary literature. Updated and revised study questions at the end of the chapter range from simple recall of information to analyzing original data or proposing hypotheses to explain remaining questions in the field. Classic Experiment boxes throughout the text help students to appreciate the seminal experiments in immunology and how they were conducted, providing a bridge to the primary research articles and emphasizing data analysis at every step.

Media and Supplements

NEW! ImmunoPortal (courses.bfwpub.com/immunology7e) This comprehensive and robust online teaching and learning tool combines a wealth of media resources, vigorous assessment, and helpful course management features into one convenient, fully customizable space.

ImmunoPortal Features:

NEW! Kuby Immunology Seventh Edition e-Book—also available as a standalone resource (ebooks.bfwpub.com/ immunology7e)

This online version of the textbook combines the contents of the printed book, electronic study tools, and a full complement of student media, including animations and videos. Students can personalize their e-Book with highlighting, bookmarking, and note-taking features. Instructors can customize the e-Book to focus on specific sections, and add their own notes and files to share with their class.

NEW! LearningCurve—A Formative Quizzing Engine

With powerful adaptive quizzing, a game-like format, and the promise of significantly better grades, *LearningCurve* gives instructors a quickly implemented, highly effective new way to get students more deeply involved in the classroom. Developed by experienced teachers and experts in educational technology, *LearningCurve* offers a series of brief, engaging activities specific to your course. These activities put the concept of "testing to learn" into action with adaptive quizzing that treats each student as an individual with specific needs:

- Students work through *LearningCurve* activities one question at a time.
- With each question, students get immediate feedback. Responses to incorrect answers include links to book sections and other resources to help students focus on what they need to learn.
- As they proceed toward completion of the activity, the level of questioning adapts to the level of performance. The questions become easier, harder, or the same depending on how the student is doing.
- And with a more confident understanding of assigned material, students will be more actively engaged during classtime.

Resources

The Resources center provides quick access to all instructor and student resources for Kuby Immunology.

For Instructors—

All instructor media are available in the ImmunoPortal and on the Instructor Resource DVD.

NEW! test bank—over 500 dynamic questions in PDF and editable Word formats include multiple-choice and shortanswer problems, rated by level of difficulty and Bloom's Taxonomy level. Fully optimized JPEG files of every figure, photo, and table in the text, featuring enhanced color, higher resolution, and enlarged fonts. Images are also offered in PowerPoint[®] format for each chapter.

Animations of complex text concepts and figures help students better understand key immunological processes.

Videos specially chosen by the authors to complement and supplement text concepts.

For Students—

All of these resources are also available in the ImmunoPortal.

• Student versions of the Animations and Videos, to help students understand key mechanisms and techniques at their own pace.

- Flashcards test student mastery of vocabulary and allow students to tag the terms they've already learned.
- Immunology on the Web weblinks introduce students to a world of online immunology resources and references.

Assignments

In this convenient space, ImmunoPortal provides instructors with the ability to assign any resource, as well as e-Book readings, discussion board posts, and their own materials. A gradebook tracks all student scores and can be easily exported to Excel or a campus Course Management System.

Acknowledgements

We owe special thanks to individuals who offered insightful ideas, who provided detailed reviews that led to major improvements, and who provided the support that made writing this text possible. These notable contributors include Dr. Stephen Emerson, Dr. David Allman, Dr. Susan Saidman, Dr. Nan Wang, Nicole Cunningham, and the many undergraduates who provided invaluable students' perspectives on our chapters. We hope that the final product reflects the high quality of the input from these experts and colleagues and from all those listed below who provided critical analysis and guidance.

We are also grateful to the previous authors of Kuby's Immunology, whose valiant efforts we now appreciate even more deeply. Their commitment to clarity, to providing the most current material in a fast moving discipline, and to maintaining the experimental focus of the discussions set the standard that is the basis for the best of this text.

We also acknowledge that this book represents the work not only of its authors and editors, but also of all those whose experiments and writing provided us with ideas, inspiration and information. We thank you and stress that all errors and inconsistencies of interpretation are ours alone.

We thank the following reviewers for their comments and suggestions about the manuscript during preparation of this seventh edition. Their expertise and insights have contributed greatly to the book.

Lawrence R. Aaronson, Utica College Jeffrey K. Actor, University of Texas Medical School at Houston Richard Adler, University of Michigan-Dearborn Emily Agard, York University, North York

Karthik Aghoram, Meredith College Rita Wearren Alisauskas, Rutgers University John Allsteadt, Virginia Intermont College Gaylene Altman, University of Washington Angelika Antoni, Kutztown University Jorge N. Artaza, Charles R. Drew University of Medicine and Science Patricia S. Astry, SUNY Fredonia Roberta Attanasio, Georgia State University Elizabeth Auger, Saint Joseph's College of Maine Avery August, Penn State University Rajeev Aurora, Saint Louis University Hospital Christine A. Bacon, Bay Path College Jason C. Baker, Missouri Western State College Kenneth Balazovich, University of Michigan-Dearborn Jennifer L. Bankers-Fulbright, Augsburg College Amorette Barber, Longwood University Brianne Barker, Hamilton College Scott R. Barnum, University of Alabama at Birmingham Laura Baugh, University of Dallas Marlee B. Marsh, Columbia College Rachel Venn Beecham, Mississippi Valley State University Fabian Benencia, Ohio University Main Campus Charlie Garnett Benson, Georgia State University Daniel Bergey, Black Hills State University Carolyn A. Bergman, Georgian Court College Elke Bergmann-Leitner, WRAIR/Uniformed Services University of Health Services

Acknowledgements XXV

Brian P. Bergstrom, Muskingum College Susan Bjerke, Washburn University of Topeka Earl F. Bloch, Howard University Elliott J. Blumenthal, Indiana University-Purdue University Kathleen Bode, Flint Hills Technical College Dennis Bogyo, Valdosta State University Mark Bolyard, Union University Lisa Borghesi, University of Pittsburgh Phyllis C. Braun, Fairfield University Jay H. Bream, Johns Hopkins University School of Medicine Heather A. Bruns, Ball State University Walter J. Bruyninckx, Hanover College Eric L. Buckles, Dillard University Sandra H. Burnett, Brigham Young University Peter Burrows, University of Alabama at Birmingham Ralph Butkowski, Augsburg College Jean A. Cardinale, Alfred University Edward A. Chaperon, Creighton University Stephen K. Chapes, Kansas State University Christopher Chase, South Dakota State University

Thomas Chiles, Boston College Harold Chittum, Pikeville College Peter A. Chung, Pittsburg State University Felicia L. Cianciarulo, Carlow University Bret A. Clark, Newberry College Patricia A. Compagnone-Post, Albertus Magnus College Yasemin Kaya Congleton, Bluegrass Community and Technical College Vincent A. Connors, University of South Carolina-Spartanburg Conway-Klaassen, University of Minnesota Lisa Cuchara, Quinnipiac University Tanya R. Da Sylva, York University, North York Kelley L. Davis, Nova Southeastern University Jeffrey Dawson, Duke University Joseph DeMasi, Massachusetts College of Pharmacy & Allied Health Stephanie E. Dew, Centre College Joyce E. S. Doan, Bethel University Diane Dorsett, Georgia Gwinnett College James R. Drake, Albany Medical College Erastus C. Dudley, Huntingdon College Jeannine M. Durdik, University of Arkansas Fayetteville Karen M. Duus, Albany Medical College Christina K. Eddy, North Greenville University Anthony Ejiofor, Tennessee State University Jennifer Ellington, Belmont Abbey College Samantha L. Elliott, Saint Mary's College of Maryland Lehman L. Ellis, Our Lady of Holy Cross College

Sherine F. Elsawa, Northern Illinois University

Fort Wayne

Uthayashanker Ezekiel, Saint Louis University Medical Center Diana L. Fagan, Youngstown State University Rebecca V. Ferrell, Metropolitan State College of Denver Ken Field, Bucknell University Krista Fischer-Stenger, University of Richmond Howard B. Fleit, SUNY at Stony Brook Sherry D. Fleming, Kansas State University Marie-dominique Franco, Regis University Joel Gaikwad, Oral Roberts University D. L. Gibson, University of British Columbia-Okanagan Laura Glasscock, Winthrop University David Glick, Kings College Elizabeth Godrick, Boston University Karen Golemboski, Bellarmine University Sandra O. Gollnick, SUNY Buffalo James F. Graves, University of Detroit-Mercy Demetrius Peter Gravis, Beloit College Anjali D. Gray, Lourdes University Valery Z. Grdzelishvili, University of North Carolina-Charlotte Carla Guthridge, Cameron University David J. Hall, Lawrence University Sandra K. Halonen, Montana State University Michael C. Hanna, Texas A & M-Commerce Kristian M. Hargadon, Hampden-Sydney College JL Henriksen, Bellevue University Michelle L. Herdman, University of Charleston Jennifer L. Hess, Aquinas College Edward M. Hoffmann, University of Florida Kristin Hogquist, University of Minnesota Jane E. Huffman, East Stroudsburg University of Pennsylvania Lisa A. Humphries, University of California, Los Angeles Judith Humphries, Lawrence University Mo Hunsen, Kenyon College Vijaya Iragavarapu-Charyulu, Florida Atlantic University Vida R. Irani, Indiana University of Pennsylvania Christopher D. Jarvis, Hampshire College Eleanor Jator, Austin Peay State University Stephen R. Jennings, Drexel University College of Medicine Robert Jonas, Texas Lutheran University Vandana Kalia, Penn State University- Main Campus Azad K. Kaushik, University of Guelph George Keller, Samford University Kevin S. Kinney, De Pauw University Edward C. Kisailus, Canisius College David J. Kittlesen, University of Virginia Dennis J. Kitz, Southern Illinois University-Edwardsville Janet Kluftinger, University of British Columbia -Okanagan Rolf König, University of Texas Medical Branch at Galveston Kristine Krafts, University of Minnesota-Duluth Ruhul Kuddus, Utah Valley University Narendra Kumar, Texas A&M Health Science Center

N. M. Kumbaraci, Stevens Institute of Technology Jesse J. Kwiek, The Ohio State University Main Camp John M. Lammert, Gustavus Aldolphus College Courtney Lappas, Lebanon Valley College Christopher S. Lassiter, Roanoke College Jennifer Kraft Leavey, Georgia Institute of Technology Melanie J. Lee-Brown, Guilford College Vicky M. Lentz, SUNY College at Oneonta Joseph Lin, Sonoma State University Joshua Loomis, Nova Southeastern University Jennifer Louten, Southern Polytechnic State University Jon H. Lowrance, Lipscomb University Milson J. Luce, West Virginia University Institute of Technology Phillip J. Lucido, Northwest Missouri State University M.E. MacKay, Thompson Rivers University Andrew P. Makrigiannis, University of Ottawa Greg Maniero, Stonehill College David Markwardt, Ohio Wesleyan University John Martinko, Southern Illinois University Andrea M. Mastro, Penn State University-Main Campus Ann H. McDonald, Concordia University Lisa N. McKernan, Chestnut Hill College Catherine S. McVay, Auburn University Daniel Meer, Cardinal Stritch University JoAnn Meerschaert, Saint Cloud State University Brian J. Merkel, University Wisconsin-Green Bay Jiri Mestecky, University of Alabama at Birmingham Dennis W. Metzger, Albany Medical College Jennifer A. Metzler, Ball State University John A. Meyers, Boston University Medical School Yuko J. Miyamoto, Elon College Jody M. Modarelli, Hiram College Devonna Sue Morra, Saint Francis University Rita B. Moyes, Texas A&M Annette Muckerheide, College of Mount Saint Joseph Sue Mungre, Northeastern Illinois University Kari L. Murad, College of Saint Rose Karen Grandel Nakaoka, Weber State University Rajkumar Nathaniel, Nicholls State University David Nemazee, University of California, San Diego Hamida Rahim Nusrat, San Francisco State University Tracy O'Connor, Mount Royal College Marcos Oliveira, University of the Incarnate Word Donald Ourth, University of Memphis Deborah Palliser, Albert Einstein College of Medicine Shawn Phippen, Valdosta State University Melinda J. Pomeroy-Black, La Grange College Edith Porter, California State University, Los Angeles Michael F. Princiotta, SUNY Upstate Medical University Gerry A Prody, Western Washington University Robyn A. Puffenbarger, Bridgewater College

Aimee Pugh-Bernard, University of Colorado at Denver Pattle Pun, Wheaton College Sheila Reilly, Belmont Abbey College Karen A. Reiner, Andrews University Margaret Reinhart, University of the Sciences in Philadelphia Stephanie Richards, Bates College Sarah M. Richart, Azusa Pacific University James E. Riggs, Rider University Vanessa Rivera-Amill, Ponce School of Medicine Katherine Robertson, Westminster College James L. Rooney, Lincoln University Robin S. Salter, Oberlin College Sophia Sarafova, Davidson College Surojit Sarkar, Penn State University-Main Campus Perry M. Scanlan, Austin Peay State University Ralph Seelke, University Wisconsin-Superior Diane L. Sewell, University Wisconsin-La Crosse Anding Shen, Calvin College Penny Shockett, Southeastern Louisiana University Michael Sikes, North Carolina State University Maryanne C. Simurda, Washington and Lee University Paul K. Small, Eureka College Jonathan Snow, Williams College Ralph A. Sorensen, Gettysburg College Andrew W. Stadnyk, Dalhousie University Faculty of Medicine Douglas A. Steeber, University Wisconsin-Milwaukee Viktor Steimle, University of Sherbrooke, Sherbrooke Douglas J. Stemke, University of Indianapolis Carolyn R. Stenbak, Seattle University Jennifer Ripley Stueckle, West Virginia University Kathleen Sullivan, Louisiana Technical College Alexandria Susmit Suvas, Oakland University Gabor Szalai, University of South Carolina Seetha M Tamma, Long Island University-C.W. Post Matthew J. Temple, Nazareth College Kent R. Thomas, Wichita State University Diane G. Tice, SUNY Morrisville Sara Sybesma Tolsma, Northwestern College Clara Tóth, Saint Thomas Aquinas College Bebhinn Treanor, University of Toronto Scarborough Allen W. Tsang, Bowman Gray Medical School Amar S. Tung, Lincoln University Lloyd Turtinen, University Wisconsin-Eau Claire Timothy M VanWagoner, Oklahoma Christian/ University of Oklahoma HSC Evros Vassiliou, Kean University Vishwanath Venketaraman, Western University of Health Sciences Kathleen Verville, Washington College Katherine A. Wall, University of Toledo Helen Walter, Mills College

Christopher Ward, University of Alberta
Benjamin S. Weeks, Adelphi University
Ben B. Whitlock, University of Saint Francis
Robert Winn, Northern Michigan University
Candace R. Winstead, California Polytechnic State University-San Luis Obispo
Dorothy M. Wrigley, Minnesota State University
Jodi L. Yorty, Elizabethtown College
Sheryl Zajdowicz, Metropolitan State University of Denver
Mary Katherine Zanin, The Citadel The Military College of South Carolina
Gary Zieve, SUNY at Stony Brook
Michael I. Zimmer, Purdue Calumet
Gilbert L. Zink, University of the Sciences in Philadelphia
Patty Zwollo, College of William & Mary

Finally, we thank our experienced and talented colleagues at W. H. Freeman and Company. Particular thanks to the production team members Philip McCaffrey, Sherrill Redd, Heath Lynn Silberfeld, Diana Blume, Lawrence Guerra, Janice Donnola, Christine Buese, and Elyse Reider. Thanks are also due to the editorial team of Lauren Schultz, Susan Winslow, Allison Michael, Yassamine Ebadat, and Irene Pech.

However, a very special thanks go to our developmental editor, Erica Champion, and our developmental coordinator, Sara Ruth Blake. Erica has guided us from the beginning with a probing vision, endless patience, and keen eye for narrative and clarity. Sara kept us organized and true to deadlines with heroic resolve. The involvement of these two extraordinarily talented team members has made this edition, and its ambitious aspirations, possible. This page lelt intentionally blank.

Overview of the Immune System

he immune system evolved to protect multicellular organisms from pathogens. Highly adaptable, it defends the body against invaders as diverse as the tiny (~30 nm), intracellular virus that causes polio and as large as the giant parasitic kidney worm *Dioctophyme renale*, which can grow to over 100 cm in length and 10 mm in width. This diversity of potential pathogens requires a range of recognition and destruction mechanisms to match the multitude of invaders. To accomplish this feat, vertebrates have evolved a complicated and dynamic network of cells, molecules, and pathways. Although elements of these networks can be found throughout the plant and animal kingdoms, the focus of this book will be on the highly evolved mammalian immune system.

The fully functional immune system involves so many organs, molecules, cells, and pathways in such an interconnected and sometimes circular process that it is often difficult to know where to start! Recent advances in cell imaging, genetics, bioinformatics, as well as cell and molecular biology, have helped us to understand many of the individual players in great molecular detail. However, a focus on the details (and there are many) can make taking a step back to see the bigger picture challenging, and it is often the bigger picture that motivates us to study immunology. Indeed, the field of immunology can be credited with the vaccine that eradicated smallpox, the ability to transplant organs between humans, and the drugs used today to treat asthma. Our goal in this chapter is therefore to present the background and concepts in immunology that will help bridge the gap between the cellular and molecular detail presented in subsequent chapters and the complete picture of an immune response. A clear understanding of each of the many players involved will help one appreciate the intricate coordination of an immune system that makes all of this possible.

The study of immunology has produced amazing and fascinating stories (some of which you will see in this book), where host and microbe engage in battles waged over both minutes and millennia. But the immune system is also much more than an isolated component of the body, merely responsible for search-and-destroy missions. In fact, it interleaves with many of the other body systems,

A phagocytic cell (macrophage, green) engulfing the bacteria that cause tuberculosis (orange). Max Planck Institute for Infection Biology/Dr. Volker Brinkmann

- A Historical Perspective of Immunology
- Important Concepts for Understanding the Mammalian Immune Response
- The Good, Bad, and Ugly of the Immune System

including the endocrine, nervous, and metabolic systems, with more connections undoubtedly to be discovered in time. Finally, it has become increasingly clear that elements of immunity play key roles in regulating homeostasis in the body for a healthy balance. Information gleaned from the study of the immune system, as well as its connections with other systems, will likely have resounding repercussions across many basic science and biomedical fields, not to mention in the future of clinical medicine.

This chapter begins with a historical perspective, charting the beginnings of the study of immunology, largely driven by the human desire to survive major outbreaks of infectious disease. This is followed by presentation of a few key concepts that are important hallmarks of the mammalian immune response, many of which may not have been encountered elsewhere in basic biology. This is not meant as a comprehensive overview of the mammalian immune system but rather as a means for jumping the large conceptual hurdles frequently encountered as one begins to describe the complexity and interconnected nature of the immune response. We hope this will whet the appetite and prepare the reader for a more thorough discussion of the specific components of immunity presented in the following chapters. We conclude with a few challenging clinical situations, such as instances in which the immune system fails to act or becomes the aggressor, turning its awesome powers against the host. More in-depth coverage of these and other medical aspects of immunology can be found in the final chapters of this book.

A Historical Perspective of Immunology

The discipline of immunology grew out of the observation that individuals who had recovered from certain infectious diseases were thereafter protected from the disease. The Latin term *immunis*, meaning "exempt," is the source of the English word **immunity**, a state of protection from infectious disease. Perhaps the earliest written reference to the phenomenon of immunity can be traced back to Thucydides, the great historian of the Peloponnesian War. In describing a plague in Athens, he wrote in 430 BC that only those who had recovered from the plague could nurse the sick because they would not contract the disease a second time. Although early societies recognized the phenomenon of immunity, almost 2000 years passed before the concept was successfully converted into medically effective practice.

Early Vaccination Studies Led the Way to Immunology

The first recorded attempts to deliberately induce immunity were performed by the Chinese and Turks in the fifteenth century. They were attempting to prevent smallpox, a disease that is fatal in about 30% of cases and that leaves survivors disfigured for life (Figure 1-1). Reports suggest that the dried crusts derived from smallpox pustules were either inhaled or inserted into small cuts in the skin (a technique called *variolation*) in order to prevent this dreaded disease. In 1718, Lady Mary Wortley Montagu, the wife of the British ambassador in Constantinople, observed the positive effects of variolation on the native Turkish population and had the technique performed on her own children.

The English physician Edward Jenner later made a giant advance in the deliberate development of immunity, again targeting smallpox. In 1798, intrigued by the fact that milkmaids who had contracted the mild disease cowpox were subsequently immune to the much more severe smallpox, Jenner reasoned that introducing fluid from a cowpox pustule into people (i.e., inoculating them) might protect them from smallpox. To test this idea, he inoculated an eight-year-old boy with fluid from a cowpox pustule and later intentionally infected the child with smallpox. As predicted, the child did not develop smallpox. Although this represented a major breakthrough, as one might imagine, these sorts of human studies could not be conducted under current standards of medical ethics.

Jenner's technique of inoculating with cowpox to protect against smallpox spread quickly through Europe. However, it

FIGURE 1-1 African child with rash typical of smallpox on face, chest, and arms. Smallpox, caused by the virus *Variola major*, has a 30% mortality rate. Survivors are often left with disfiguring scars. [Centers for Disease Control.]

was nearly a hundred years before this technique was applied to other diseases. As so often happens in science, serendipity combined with astute observation led to the next major advance in immunology: the induction of immunity to cholera. Louis Pasteur had succeeded in growing the bacterium that causes fowl cholera in culture, and confirmed this by injecting it into chickens that then developed fatal cholera. After returning from a summer vacation, he and colleagues resumed their experiments, injecting some chickens with an old bacterial culture. The chickens became ill, but to Pasteur's surprise, they recovered. Interested, Pasteur then grew a fresh culture of the bacterium with the intention of injecting this lethal brew into some fresh, unexposed chickens. But as the story is told, his supply of fresh chickens was limited, and therefore he used a mixture of previously injected chickens and unexposed birds. Unexpectedly, only the fresh chickens died, while the chickens previously exposed to the older bacterial culture were completely protected from the disease. Pasteur hypothesized and later showed that aging had weakened the virulence of the pathogen and that such a weakened or attenuated strain could be administered to provide immunity against the disease. He called this attenuated strain a **vaccine** (from the Latin *vacca*, meaning "cow"), in honor of Jenner's work with cowpox inoculation.

Pasteur extended these findings to other diseases, demonstrating that it was possible to attenuate a pathogen and administer the attenuated strain as a vaccine. In a now classic experiment performed in the small village of Pouilly-le-Fort in 1881, Pasteur first vaccinated one group of sheep with anthrax bacteria (Bacillus anthracis) that were attenuated by heat treatment. He then challenged the vaccinated sheep, along with some unvaccinated sheep, with a virulent culture of the anthrax bacillus. All the vaccinated sheep lived and all the unvaccinated animals died. These experiments marked the beginnings of the discipline of immunology. In 1885, Pasteur administered his first vaccine to a human, a young boy who had been bitten repeatedly by a rabid dog (Figure 1-2). The boy, Joseph Meister, was inoculated with a series of attenuated rabies virus preparations. The rabies vaccine is one of very few that can be successful when administered shortly after exposure, as long as the virus has not yet reached the central nervous system and begun to induce neurologic symptoms. Joseph lived, and later became a caretaker at the Pasteur Institute, which was opened in 1887 to treat the many rabies victims that began to flood in when word of Pasteur's success spread; it remains to this day an institute dedicated to the prevention and treatment of infectious disease.

FIGURE 1-2 Wood engraving of Louis Pasteur watching Joseph Meister receive the rabies vaccine. [Source: From Harper's Weekly 29:836; courtesy of the National Library of Medicine.]

Vaccination Is an Ongoing, Worldwide Enterprise

The emergence of the study of immunology and the discovery of vaccines are tightly linked. The development of effective vaccines for some pathogens is still a major challenge, discussed in greater detail in Chapter 17. However, despite many biological and social hurdles, vaccination has yielded some of the most profound success stories in terms of improving mortality rates worldwide, especially in very young children.

In 1977, the last known case of naturally acquired smallpox was seen in Somalia. This dreaded disease was eradicated by universal application of a vaccine similar to that used by Jenner in the 1790s. One consequence of eradication is that universal vaccination becomes unnecessary. This is a tremendous benefit, as most vaccines carry at least a slight risk to persons vaccinated. And yet in many cases every individual does not need to be immune in order to protect most of the population. As a critical mass of people acquire protective immunity, either through vaccination or infection, they can serve as a buffer for the rest. This principle, called herd immunity, works by decreasing the number of individuals who can harbor and spread an infectious agent, significantly decreasing the chances that susceptible individuals will become infected. This presents an important altruistic consideration: although many of us could survive infectious diseases for which we receive a vaccine (such as the flu), this is not true for everyone. Some individuals cannot receive the vaccine (e.g., the very young or immune compromised), and vaccination is never 100% effective. In other words, the susceptible, nonimmune individuals among us can benefit from the pervasive immunity of their neighbors.

However, there is a darker side to eradication and the end of universal vaccination. Over time, the number of people with no immunity to the disease will begin to rise, ending herd immunity. Vaccination for smallpox largely ended by the early to mid-1970s, leaving well over half of the current world population susceptible to the disease. This means that smallpox, or a weaponized version, is now considered a potential bioterrorism threat. In response, new and safer vaccines against smallpox are still being developed today, most of which go toward vaccinating U.S. military personnel thought to be at greatest risk of possible exposure.

In the United States and other industrialized nations, vaccines have eliminated a host of childhood diseases that were the cause of death for many young children just 50 years ago. Measles, mumps, chickenpox, whooping cough (pertussis), tetanus, diphtheria, and polio, once thought of as an inevitable part of childhood are now extremely rare or nonexistent in the United States because of current vaccination practices (Table 1-1). One can hardly estimate the savings to society resulting from the prevention of these diseases. Aside from suffering and mortality, the cost to treat these illnesses and their aftereffects or sequelae (such as paralysis, deafness, blindness, and mental retardation) is immense and dwarfs the costs of immunization. In fact, recent estimates suggest

Cases of selected infectious disease in the United States before and after the introduction of effective vaccines

	ANNUAL CASES/YR	CASES IN 2010			
Disease	Prevaccine	Postvaccine	Reduction (%)		
Smallpox	48,164	0	100		
Diphtheria	175,885	0	100		
Rubeola (measles)	503,282	26	99.99		
Mumps	152,209	2,612	98.28		
Pertussis ("whooping cough")	147,271	27,550	81.29		
Paralytic polio	16,316	0	100		
Rubella (German measles)	47,745	5	99.99		
Tetanus ("lockjaw")	1,314 (deaths)	26 (cases)	98.02		
Invasive Haemophilus influenzae	20,000	3,151	84.25		
SOURCE: Adapted from W. A. Orenstein et al., 2005. Health Affairs 24:599 and CDC statistics of Notifiable Diseases.					

that significant economic and human life benefits could be realized by simply scaling up the use of a few childhood vaccines in the poorest nations, which currently bear the brunt of the impact of these childhood infectious diseases. For example, it is estimated that childhood pneumonia alone, caused primarily by vaccine-preventable *Streptococcus pneumoniae* (aka, pneumococcus) and *Haemophilus influenzae* type b (aka, Hib), will account for 2.7 million childhood deaths in developing nations over the next decade if vaccine strategies in these regions remain unchanged.

Despite the many successes of vaccine programs, such as the eradication of smallpox, many vaccine challenges still remain. Perhaps the greatest current challenge is the design of effective vaccines for major killers such as malaria and AIDS. Using our increased understanding of the immune system, plus the tools of molecular and cellular biology, genomics, and proteomics, scientists will be better positioned to make progress toward preventing these and other emerging infectious diseases. A further issue is the fact that millions of children in developing countries die from diseases that are fully preventable by available, safe vaccines. High manufacturing costs, instability of the products, and cumbersome delivery problems keep these vaccines from reaching those who might benefit the most. This problem could be alleviated in many cases by development of future-generation vaccines that are inexpensive, heat stable, and administered without a needle. Finally, misinformation and myth surrounding vaccine efficacy and side effects continues to hamper many potentially life-saving vaccination programs (see Clinical Focus Box on p. 5).

Immunology Is About More Than Just Vaccines and Infectious Disease

For some diseases, immunization programs may be the best or even the only effective defense. At the top of this list are infec-

tious diseases that can cause serious illness or even death in unvaccinated individuals, especially those transmitted by microbes that also spread rapidly between hosts. However, vaccination is not the only way to prevent or treat infectious disease. First and foremost is preventing infection, where access to clean water, good hygiene practices, and nutrient-rich diets can all inhibit transmission of infectious agents. Second, some infectious diseases are self-limiting, easily treatable, and nonlethal for most individuals, making them unlikely targets for costly vaccination programs. These include the common cold, caused by the Rhinovirus, and cold sores that result from Herpes Simplex Virus infection. Finally, some infectious agents are just not amenable to vaccination. This could be due to a range of factors, such as the number of different molecular variants of the organism, the complexity of the regimen required to generate protective immunity, or an inability to establish the needed immunologic memory responses (more on this later).

One major breakthrough in the treatment of infectious disease came when the first antibiotics were introduced in the 1920s. Currently there are more than a hundred different antibiotics on the market, although most fall into just six or seven categories based on their mode of action. Antibiotics are chemical agents designed to destroy certain types of bacteria. They are ineffective against other types of infectious agents, as well as some bacterial species. One particularly worrying trend is the steady rise in antibiotic resistance among strains traditionally amenable to these drugs, making the design of next-generation antibiotics and new classes of drugs increasingly important. Although antiviral drugs are also available, most are not effective against many of the most common viruses, including influenza. This makes preventive vaccination the only real recourse against many debilitating infectious agents, even those that rarely cause mortality in healthy adults. For instance, because of the high mutation rate of the influenza virus, each year a new flu vaccine must

CLINICAL FOCUS

BOX 1-1

Vaccine Controversy: What's Truth and What's Myth?

Despite the record of worldwide success of vaccines in improving public health, some opponents claim that vaccines do more harm than good, pressing for elimination or curtailment of childhood vaccination programs. There is no dispute that vaccines represent unique safety issues, since they are administered to people who are healthy. Furthermore, there is general agreement that vaccines must be rigorously tested and regulated, and that the public must have access to clear and complete information about them. Although the claims of vaccine critics must be evaluated, many can be answered by careful and objective examination of records.

A recent example is the claim that vaccines given to infants and very young children may contribute to the rising incidence of autism. This began with the suggestion that thimerosal, a mercury-based additive used to inhibit bacterial growth in some vaccine preparations since the 1930s, was causing autism in children. In 1999 the U.S. Centers for Disease Control and Prevention (CDC) and the American Association of Pediatricians (AAP) released a joint recommendation that vaccine manufacturers begin to gradually phase out thimerosal use in vaccines. This recommendation was based on the increase in the number of vaccines given to infants and was aimed at keeping children at or below Environmental Protection Agency (EPA)-recommended maximums in mercury exposure. However, with the release of this recommendation, parent-led public advocacy groups began a media-fueled campaign to build a case demonstrating

what they believed was a link between vaccines and an epidemic of autism. These AAP recommendations and public fears led to a dramatic decline in the latter half of 1999 in U.S. newborns vaccinated for hepatitis B. To date, no credible study has shown a scientific link between thimerosal and autism. In fact, cases of autism in children have continued to rise since thimerosal was removed from all childhood vaccines in 2001. Despite evidence to the contrary, some still believe this claim.

A 1998 study appearing in The Lancet, a reputable British medical journal, further fueled these parent advocacy groups and anti-vaccine organizations. The article, published by Andrew Wakefield, claimed the measles-mumps-rubella (MMR) vaccine caused pervasive developmental disorders in children, including autism spectrum disorder. More than a decade of subsequent research has been unable to substantiate these claims, and 10 of the original 12 authors on the paper later withdrew their support for the conclusions of the study. In 2010, The Lancet retracted the original article when it was shown that the data in the study had been falsified to reach desired conclusions. Nonetheless, in the years between the original publication of the Lancet article and its retraction, this case is credited with decreasing rates of MMR vaccination from a high of 92% to a low of almost 60% in certain areas of the United Kingdom. The resulting expansion in the population of susceptible individuals led to endemic rates of measles and mumps infection, especially in several areas of Europe, and is credited with thousands of extended hospitalizations and several deaths in infected children.

Why has there been such a strong urge to cling to the belief that childhood vaccines are linked with developmental disorders in children despite much scientific evidence to the contrary? One possibility lies in the timing of the two events. Based on current AAP recommendations, in the United States most children receive 14 different vaccines and a total of up to 26 shots by the age of 2. In 1983, children received less than half this number of vaccinations. Couple this with the onset of the first signs of autism and other developmental disorders in children, which can appear guite suddenly and peak around 2 years of age. This sharp rise in the number of vaccinations young children receive today and coincidence in timing of initial autism symptoms is credited with sparking these fears about childhood vaccines. Add to this the increasing drop in basic scientific literacy by the general public and the overabundance of ways to gather such information (accurate or not). As concerned parents search for answers, one can begin to see how even scientifically unsupported links could begin to take hold as families grapple with how to make intelligent public health risk assessments.

The notion that vaccines cause autism was rejected long ago by most scientists. Despite this, more work clearly needs to be done to bridge the gap between public perception and scientific understanding.

Gross, L. 2009. A broken trust: Lessons from the vaccine–autism wars. *PLoS Biology* **7**:e1000114. Larson, H.J., et al. 2011. Addressing the vaccine confidence gap. *Lancet* **378**:526.

be prepared based on a prediction of the prominent genotypes likely to be encountered in the next season. Some years this vaccine is more effective than others. If and when a more lethal and unexpected pandemic strain arises, there will be a race between its spread and the manufacture and administration of a new vaccine. With the current ease of worldwide travel, present-day emergence of a pandemic strain of influenza could dwarf the devastation wrought by the 1918 flu pandemic, which left up to 50 million dead. However, the eradication of infectious disease is not the only worthy goal of immunology research. As we will see later, exposure to infectious agents is part of our evolutionary history, and wiping out all of these creatures could potentially cause more harm than good, both for the host and the environment. Thanks to many technical advances allowing scientific discoveries to move efficiently from the bench to the bedside, clinicians can now manipulate the immune response in ways never before possible. For example, treatments to boost, inhibit, or redirect the specific efforts of immune cells are being applied to treat autoimmune disease, cancer, and allergy, as well as other chronic disorders. These efforts are already extending and saving lives. Likewise, a clearer understanding of immunity has highlighted the interconnected nature of body systems, providing unique insights into areas such as cell biology, human genetics, and metabolism. While a cure for AIDS and a vaccine to prevent HIV infection are still the primary targets for many scientists who study this disease, a great deal of basic science knowledge has been gleaned from the study of just this one virus and its interaction with the human immune system.

Immunity Involves Both Humoral and Cellular Components

Pasteur showed that vaccination worked, but he did not understand how. Some scientists believed that immune protection in vaccinated individuals was mediated by cells, while others postulated that a soluble agent delivered protection. The experimental work of Emil von Behring and Shibasaburo Kitasato in 1890 gave the first insights into the mechanism of immunity, earning von Behring the Nobel Prize in Physiology or Medicine in 1901 (Table 1-2). Von Behring and

FABLE 1-2 Nobel Prizes for immunologic research			
Year	Recipient	Country	Research
1901	Emil von Behring	Germany	Serum antitoxins
1905	Robert Koch	Germany	Cellular immunity to tuberculosis
1908	Elie Metchnikoff Paul Ehrlich	Russia Germany	Role of phagocytosis (Metchnikoff) and antitoxins (Ehrlich) in immunity
1913	Charles Richet	France	Anaphylaxis
1919	Jules Bordet	Belgium	Complement-mediated bacteriolysis
1930	Karl Landsteiner	United States	Discovery of human blood groups
1951	Max Theiler	South Africa	Development of yellow fever vaccine
1957	Daniel Bovet	Switzerland	Antihistamines
1960	F. Macfarlane Burnet Peter Medawar	Australia Great Britain	Discovery of acquired immunological tolerance
1972	Rodney R. Porter Gerald M. Edelman	Great Britain United States	Chemical structure of antibodies
1977	Rosalyn R. Yalow	United States	Development of radioimmunoassay
1980	George Snell Jean Dausset Baruj Benacerraf	United States France United States	Major histocompatibility complex
1984	Niels K. Jerne Cesar Milstein Georges E. Köhler	Denmark Great Britain Germany	Immune regulatory theories (Jerne) and technological advances in the development of monoclonal antibodies (Milstein and Köhler)
1987	Susumu Tonegawa	Japan	Gene rearrangement in antibody production
1991	E. Donnall Thomas Joseph Murray	United States United States	Transplantation immunology
1996	Peter C. Doherty Rolf M. Zinkernagel	Australia Switzerland	Role of major histocompatibility complex in antigen recognition by T cells
2002	Sydney Brenner H. Robert Horvitz J. E. Sulston	South Africa United States Great Britain	Genetic regulation of organ development and cell death (apoptosis)
2008	Harald zur Hausen Françoise Barré-Sinoussi Luc Montagnier	Germany France France	Role of HPV in causing cervical cancer (Hausen) and the discovery of HIV (Barré-Sinoussi and Montagnier)
2011	Jules Hoffman Bruce Beutler Ralph Steinman	France United States United States	Discovery of activating principles of innate immunity (Hoffman and Beutler) and role of dendritic cells in adaptive immunity (Steinman)
1			

FIGURE 1-3 Drawing by Elie Metchnikoff of phagocytic cells surrounding a foreign particle (left) and modern image of a phagocyte engulfing the bacteria that cause tuberculosis (right). Metchnikoff first described and named the process of phagocytosis, or ingestion of foreign matter by white blood cells. Today, phagocytic cells can be imaged in great detail using advanced microscopy techniques. [Drawing reproduced by permission of The British Library:7616.h.19, Lectures on the Comparative Pathology of Inflammation delivered at the Pasteur Institute in 1891, translated by F. A. Starling and E. H. Starling, with plates by Il'ya Il'ich Mechnikov, 1893, p. 64, fig. 32. Photo courtesy Dr. Volker Brinkmann/Visuals Unlimited, Inc.]

Kitasato demonstrated that serum—the liquid, noncellular component recovered from coagulated blood—from animals previously immunized with diphtheria could transfer the immune state to unimmunized animals.

In 1883, even before the discovery that a serum component could transfer immunity, Elie Metchnikoff, another Nobel Prize winner, demonstrated that cells also contribute to the immune state of an animal. He observed that certain white blood cells, which he termed **phagocytes**, ingested (phagocytosed) microorganisms and other foreign material (Figure 1-3, left). Noting that these phagocytic cells were more active in animals that had been immunized, Metchnikoff hypothesized that cells, rather than serum components, were the major effectors of immunity. The active phagocytic cells identified by Metchnikoff were likely blood monocytes and neutrophils (see Chapter 2), which can now be imaged using very sophisticated microscopic techniques (Figure 1-3, right).

Humoral Immunity

The debate over cells versus soluble mediators of immunity raged for decades. In search of the protective agent of immunity, various researchers in the early 1900s helped characterize the active immune component in blood serum. This soluble component could neutralize or precipitate toxins and could agglutinate (clump) bacteria. In each case, the component was named for the activity it exhibited: antitoxin, precipitin, and agglutinin, respectively. Initially, different serum components were thought to be responsible for each activity, but during the 1930s, mainly through the efforts of Elvin Kabat, a fraction of serum first called gamma globulin (now **immunoglobulin**) was shown to be responsible for all these activities. The soluble active molecules in the immunoglobulin fraction of serum are now commonly referred to as **antibodies**. Because these antibodies were contained in body fluids (known at that time as the body *humors*), the immunologic events they participated in was called **humoral immunity**.

The observation of von Behring and Kitasato was quickly applied to clinical practice. Antiserum, the antibodycontaining serum fraction from a pathogen-exposed individual, derived in this case from horses, was given to patients suffering from diphtheria and tetanus. A dramatic vignette of this application is described in the Clinical Focus box on page 8. Today there are still therapies that rely on transfer of immunoglobulins to protect susceptible individuals. For example, emergency use of immune serum, containing antibodies against snake or scorpion venoms, is a common practice for treating bite victims. This form of immune protection that is transferred between individuals is called passive immunity because the individual receiving it did not make his or her own immune response against the pathogen. Newborn infants benefit from passive immunity by the presence of maternal antibodies in their circulation. Passive immunity may also be used as a preventive (prophylaxis) to boost the immune potential of those with compromised immunity or who anticipate future exposure to a particular microbe.

While passive immunity can supply a quick solution, it is short-lived and limited, as the cells that produce these antibodies are not being transferred. On the other hand, administration

CLINICAL FOCUS

Passive Antibodies and the Iditarod

In 1890, immunologists Emil Behring and Shibasaburo Kitasato, working together in Berlin, reported an extraordinary experiment. After immunizing rabbits with tetanus and then collecting blood serum from these animals, they injected a small amount of immune serum (cell-free fluid) into the abdominal cavity of six mice. Twenty-four hours later, they infected the treated mice and untreated controls with live, virulent tetanus bacteria. All of the control mice died within 48 hours of infection, whereas the treated mice not only survived but showed no effects of infection. This landmark experiment demonstrated two important points. One, it showed that substances that could protect an animal against pathogens appeared in serum following immunization. Two, this work demonstrated that immunity could be passively acquired, or transferred from one animal to another by taking serum from an immune animal and injecting it into a nonimmune one. These and subsequent experiments did not go unnoticed. Both men eventually received titles (Behring became von Behring and Kitasato became Baron Kitasato). A few years later, in 1901, von Behring was

awarded the first Nobel Prize in Physiology or Medicine (see Table 1-2).

These early observations, and others, paved the way for the introduction of passive immunization into clinical practice. During the 1930s and 1940s, passive immunotherapy, the endowment of resistance to pathogens by transfer of antibodies from an immunized donor to an unimmunized recipient, was used to prevent or modify the course of measles and hepatitis A. Subsequently, clinical experience and advances in the technology of immunoglobulin preparation have made this approach a standard medical practice. Passive immunization based on the transfer of antibodies is widely used in the treatment of immunodeficiency and some autoimmune diseases. It is also used to protect individuals against anticipated exposure to infectious and toxic agents against which they have no immunity. Finally, passive immunization can be lifesaving during episodes of certain types of acute infection, such as following exposure to rabies virus.

Immunoglobulin for passive immunization is prepared from the pooled plasma of thousands of donors. In effect, recipients of these antibody preparations are receiving a sample of the antibodies produced by many people to a broad diversity of pathogens-a gram of intravenous immune globulin (IVIG) contains about 10¹⁸ molecules of antibody and recognize more than 10⁷ different antigens. A product derived from the blood of such a large number of donors carries a risk of harboring pathogenic agents, particularly viruses. This risk is minimized by modern-day production techniques. The manufacture of IVIG involves treatment with solvents, such as ethanol, and the use of detergents that are highly effective in inactivating viruses such as HIV and hepatitis. In addition to treatment against infectious disease, or acute situations, IVIG is also used today for treating some chronic diseases, including several forms of immune deficiency. In all cases, the transfer of passive immunity supplies only temporary protection.

One of the most famous instances of passive antibody therapy occurred in 1925, when an outbreak of diphtheria

of a vaccine or natural infection is said to engender **active immunity** in the host: the production of one's own immunity. The induction of active immunity can supply the individual with a renewable, long-lived protection from the specific infectious organism. As we discuss further below, this long-lived protection comes from memory cells, which provide protection for years or even decades after the initial exposure.

Cell-Mediated Immunity

A controversy developed between those who held to the concept of humoral immunity and those who agreed with Metchnikoff's concept of immunity imparted by specific cells, or **cell-mediated immunity**. The relative contributions of the two were widely debated at the time. It is now obvious that both are correct—the full immune response requires both cellular and humoral (soluble) components. Early studies of immune cells were hindered by the lack of genetically defined animal models and modern tissue culture tech-

niques, whereas early studies with serum took advantage of the ready availability of blood and established biochemical techniques to purify proteins. Information about cellular immunity therefore lagged behind a characterization of humoral immunity.

In a key experiment in the 1940s, Merrill Chase, working at The Rockefeller Institute, succeeded in conferring immunity against tuberculosis by transferring white blood cells between guinea pigs. Until that point, attempts to develop an effective vaccine or antibody therapy against tuberculosis had met with failure. Thus, Chase's demonstration helped to rekindle interest in cellular immunity. With the emergence of improved cell culture and transfer techniques in the 1950s, the **lymphocyte** was identified as the cell type responsible for both cellular and humoral immunity. Soon thereafter, experiments with chickens pioneered by Bruce Glick at Mississippi State University indicated the existence of two types of lymphocytes: **T lymphocytes (T cells)**, derived from

BOX 1-2

FIGURE 1

(left) Leonhard Seppala, the Norwegian who led a team of sled dogs in the 1925 diphtheria antibody run from Nenana to Nome, Alaska. (right) Map of the current route of the Iditarod Race, which commemorates this historic delivery of lifesaving antibody. [Source: Underwood & Underwood/Corbis.]

was diagnosed in what was then the remote outpost of Nome, Alaska. Lifesaving diphtheria-specific antibodies were available in Anchorage, but no roads were open and the weather was too dangerous for flight. History tells us that 20 mushers set up a dogsled relay to cover the almost 700 miles between Nenana, the end of the railroad run, and remote Nome. In this relay, two Norwegians and their dogs covered particularly critical territory and withstood blizzard conditions: Leonhard Seppala (Figure 1, left), who covered the most treacherous territory, and Gunnar Kaasen, who drove the final two legs in whiteout conditions, behind his lead dog Balto. Kaasen and Balto arrived in time to save many of the children in the town. To commemorate this heroic event, later that same year a statue of Balto was placed in Central Park, New York City, where it still stands today. This journey is memorialized every year in the running of the Iditarod sled dog race. A map showing the current route of this more than 1000-mile trek is shown in Figure 1, right.

the *t*hymus, and **B lymphocytes (B cells)**, derived from the *b*ursa of Fabricius in birds (an outgrowth of the cloaca). In a convenient twist of nomenclature that makes B and T cell origins easier to remember, the mammalian equivalent of the *b*ursa of Fabricius is *b*one marrow, the home of developing B cells in mammals. *We now know that cellular immunity is imparted by T cells and that the antibodies produced by B cells confer humoral immunity.* The real controversy about the roles of humoral versus cellular immunity was resolved when the two systems were shown to be intertwined and it became clear that both are necessary for a complete immune response against most pathogens.

How Are Foreign Substances Recognized by the Immune System?

One of the great enigmas confronting early immunologists was what determines the specificity of the immune response for a particular foreign material, or **antigen**, the general term for any substance that elicits a specific response by B or T lymphocytes. Around 1900, Jules Bordet at the Pasteur Institute expanded the concept of immunity beyond infectious diseases, demonstrating that nonpathogenic substances, such as red blood cells from other species, could also serve as antigens. Serum from an animal that had been inoculated with noninfectious but otherwise foreign (nonself) material would nevertheless react with the injected material in a specific manner. The work of Karl Landsteiner and those who followed him showed that injecting an animal with almost any nonself organic chemical could induce production of antibodies that would bind specifically to the chemical. These studies demonstrated that antibodies have a capacity for an almost unlimited range of reactivity, including responses to compounds that had only recently been synthesized in the laboratory and are otherwise not found in nature! In addition, it was